首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrochemical water splitting for hydrogen generation is a vital part for the prospect of future energy systems, however, the practical utilization relies on the development of highly active and earth‐abundant catalysts to boost the energy conversion efficiency as well as reduce the cost. Molybdenum diselenide (MoSe2) is a promising nonprecious metal‐based electrocatalyst for hydrogen evolution reaction (HER) in acidic media, but it exhibits inferior alkaline HER kinetics in great part due to the sluggish water adsorption/dissociation process. Herein, the alkaline HER kinetics of MoSe2 is substantially accelerated by heteroatom doping with transition metal ions. Specifically, the Ni‐doped MoSe2 nanosheets exhibit the most impressive catalytic activity in terms of lower overpotential and larger exchange current density. The density functional theory (DFT) calculation results reveal that Ni/Co doping plays a key role in facilitating water adsorption as well as optimizing hydrogen adsorption. The present work paves a new way to the development of low‐cost and efficient electrocatalysts towards alkaline HER.  相似文献   

2.
TiO2 Co nanotubes decorated with nanodots (TiO2 NDs/Co NSNTs‐CFs) are reported as high‐performance earth‐abundant electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solution. TiO2 NDs/Co NSNTs can promote water adsorption and optimize the free energy of hydrogen adsorption. More importantly, the absorbed water can be easily activated in the presence of the TiO2–Co hybrid structure. These advantages will significantly promote HER. TiO2 NDs/Co NSNTs‐CFs as electrocatalysts show a high catalytic performance towards HER in alkaline solution. This study will open up a new avenue for designing and fabricating low‐cost high‐performance HER catalysts.  相似文献   

3.
To address the urgent need for clean and sustainable energy, the rapid development of hydrogen‐based technologies has started to revolutionize the use of earth‐abundant noble‐metal‐free catalysts for the hydrogen evolution reaction (HER). Like the active sites of hydrogenases, the cation sites of pyrite‐type transition‐metal dichalcogenides have been suggested to be active in the HER. Herein, we synthesized electrodes based on a Se‐enriched NiSe2 nanosheet array and explored the relationship between the anion sites and the improved hydrogen evolution activity through theoretical and experimental studies. The free energy for atomic hydrogen adsorption is much lower on the Se sites (0.13 eV) than on the Ni sites (0.87 eV). Notably, this electrode benefits from remarkable kinetic properties, with a small overpotential of 117 mV at 10 mA cm?2, a low Tafel slope of 32 mV per decade, and excellent stability. Control experiments showed that the efficient conversion of H+ into H2 is due to the presence of an excess of selenium in the NiSe2 nanosheet surface.  相似文献   

4.
Besides their use in fuel cells for energy conversion through the oxygen reduction reaction (ORR), carbon‐based metal‐free catalysts have also been demonstrated to be promising alternatives to noble‐metal/metal oxide catalysts for the oxygen evolution reaction (OER) in metal–air batteries for energy storage and for the splitting of water to produce hydrogen fuels through the hydrogen evolution reaction (HER). This Review focuses on recent progress in the development of carbon‐based metal‐free catalysts for the OER and HER, along with challenges and perspectives in the emerging field of metal‐free electrocatalysis.  相似文献   

5.
Conductivity, carrier mobility, and a suitable Gibbs free energy are important criteria that determine the performance of catalysts for a hydrogen evolution reaction (HER). However, it is a challenge to combine these factors into a single compound. Herein, we discover a superior electrocatalyst for a HER in the recently identified Dirac nodal arc semimetal PtSn4. The determined turnover frequency (TOF) for each active site of PtSn4 is 1.54 H2 s?1 at 100 mV. This sets a benchmark for HER catalysis on Pt‐based noble metals and earth‐abundant metal catalysts. We make use of the robust surface states of PtSn4 as their electrons can be transferred to the adsorbed hydrogen atoms in the catalytic process more efficiently. In addition, PtSn4 displays excellent chemical and electrochemical stabilities after long‐term exposure in air and long‐time HER stability tests.  相似文献   

6.
Renewable energy sources are highly sought after as a result of numerous worldwide problems concerning the environment and the shortage of energy. Currently, the focus in the field is on the development of catalysts that are able to provide water splitting catalysis and energy storage for the hydrogen evolution reaction (HER). While platinum is an excellent material for HER catalysis, it is costly and rare. In this work, we investigated the electrocatalytic abilities of various graphene–metal hybrids to replace platinum for the HER. The graphene materials were doped with 4f metals, namely, iridium, osmium, platinum and rhenium, as well as 3d metals, namely, cobalt, iron and manganese. We discovered that a few hybrids, in particular iridium‐ and osmium‐doped graphenes, have the potential to become competent electrocatalysts owing to their low costs and—more importantly—to their promising electrochemical performances towards the HER. One of the more noteworthy observations of this work is the superiority of these two hybrids over MoS2, a well‐known electrocatalyst for the HER.  相似文献   

7.
The development of effective and inexpensive hydrogen evolution reaction (HER) electrocatalysts for future renewable energy systems is highly desired. The strongly acidic conditions in proton exchange membranes create a need for acid‐stable HER catalysts. A nanohybrid that consists of carbon nanotubes decorated with CoP nanocrystals (CoP/CNT) was prepared by the low‐temperature phosphidation of a Co3O4/CNT precursor. As a novel non‐noble‐metal HER catalyst operating in acidic electrolytes, the nanohybrid exhibits an onset overpotential of as low as 40 mV, a Tafel slope of 54 mV dec?1, an exchange current density of 0.13 mA cm?2, and a Faradaic efficiency of nearly 100 %. This catalyst maintains its catalytic activity for at least 18 hours and only requires overpotentials of 70 and 122 mV to attain current densities of 2 and 10 mA cm?2, respectively.  相似文献   

8.
Electrochemical water splitting (EWS) is a sustainable and promising technology for producing hydrogen as an ideal energy carrier to address environmental and energy issues. Developing highly‐efficient electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) is critical for increasing the efficiency of water electrolysis. Recently, nanomaterials derived from Prussian blue (PB) and its analogs (PBA) have received increasing attention in EWS applications owing to their unique composition and structure properties. In this Minireview, the latest progress of PB/PBA‐derived materials for EWS is presented. Firstly, the catalyst design principles and the advantages of preparing electrocatalysts with PB/PBA as precursors are briefly introduced. Then, strategies for enhancing the electrocatalytic performance (HER, OER or overall water splitting) were discussed in detail, and the recent development and applications of PB/PBA‐derived catalysts for EWS were summarized. Finally, major challenges and possible future trends related to PB/PBA‐derived functional materials are proposed.  相似文献   

9.
The development of new promising metal‐free catalysts is of great significance for the electrocatalytic hydrogen evolution reaction (HER). Herein, a rationally assembled three‐dimensional (3D) architecture of 1D graphitic carbon nitride (g‐C3N4) nanoribbons with 2D graphene sheets has been developed by a one‐step hydrothermal method. Because of the multipathway of charge and mass transport, the hierarchically structured g‐C3N4 nanoribbon–graphene hybrids lead to a high electrocatalytic ability for HER with a Tafel slope of 54 mV decade?1, a low onset overpotential of 80 mV and overpotential of 207 mV to approach a current of 10 mA cm?2, superior to those non‐metal materials and well‐developed metallic catalysts reported previously. This work presents a great advance for designing and developing highly efficient metal‐free catalyst for hydrogen evolution.  相似文献   

10.
《中国化学快报》2022,33(8):3987-3992
Green hydrogen production and CO2 fixation have been identified as the fundamental techniques for sustainable economy. The open challenge is to develop high performance catalysts for hydrogen evolution reaction (HER) and CO2 electroreduction (CO2ER) to valuable chemicals. Under such context, this work reported computational efforts to design promising electrocatalyst for HER and CO2ER based on the swarm-intelligence algorithm. Among the family of transition-metal phosphides (TMPs), Pt2P3 monolayer has been identified as excellent bifunctional catalysts due to high stability, excellent conductivity and superior catalytic performance. Different from typical d-block catalysts, p-band center presented by P atoms within Pt2P3 monolayer plays the essential role for its reactivity towards HER and CO2ER, underlining the key value of p-electrons in advanced catalyst design and thus providing a promising strategy to further develop novel catalysts made of p-block elements for various energy applications.  相似文献   

11.
A challenging but pressing task to design and synthesize novel, efficient, and robust pH‐universal hydrogen evolution reaction (HER) electrocatalysts for scalable and sustainable hydrogen production through electrochemical water splitting. Herein, we report a facile method to prepare an efficient and robust Ru‐M (M=Ni, Mn, Cu) bimetal nanoparticle and carbon quantum dot hybrid (RuM/CQDs) for pH‐universal HER. The RuNi/CQDs catalysts exhibit outstanding HER performance at all pH levels. The unexpected low overpotentials of 13, 58, and 18 mV shown by RuNi/CQDs allow a current density of 10 mA cm?2 in 1 m KOH, 0.5 m H2SO4, and 1 m PBS, respectively, for Ru loading at 5.93 μgRu cm?2. This performance is among the best catalytic activities reported for any platinum‐free electrocatalyst. Theoretical studies reveal that Ni doping results in a moderate weakening of the hydrogen bonding energy of nearby surface Ru atoms, which plays a critical role in improving the HER activity.  相似文献   

12.
Silica-derived nanostructured catalysts (SDNCs) are a class of materials synthesized using nanocasting and templating techniques, which involve the sacrificial removal of a silica template to generate highly porous nanostructured materials. The surface of these nanostructures is functionalized with a variety of electrocatalytically active metal and non-metal atoms. SDNCs have attracted considerable attention due to their unique physicochemical properties, tunable electronic configuration, and microstructure. These properties make them highly efficient catalysts and promising electrode materials for next generation electrocatalysis, energy conversion, and energy storage technologies. The continued development of SDNCs is likely to lead to new and improved electrocatalysts and electrode materials. This review article provides a comprehensive overview of the recent advances in the development of SDNCs for electrocatalysis and energy storage applications. It analyzes 337,061 research articles published in the Web of Science (WoS) database up to December 2022 using the keywords “silica”, “electrocatalysts”, “ORR”, “OER”, “HER”, “HOR”, “CO2RR”, “batteries”, and “supercapacitors”. The review discusses the application of SDNCs for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), supercapacitors, lithium-ion batteries, and thermal energy storage applications. It concludes by discussing the advantages and limitations of SDNCs for energy applications.  相似文献   

13.
MoS2 particles with different size distributions were prepared by simple ultrasonication of bulk MoS2 followed by gradient centrifugation. Relative to the inert microscale MoS2, nanoscale MoS2 showed significantly improved catalytic activity toward the oxygen‐reduction reaction (ORR) and hydrogen‐evolution reaction (HER). The decrease in particle size was accompanied by an increase in catalytic activity. Particles with a size of around 2 nm exhibited the best dual ORR and HER performance with a four‐electron ORR process and an HER onset potential of ?0.16 V versus the standard hydrogen electrode (SHE). This is the first investigation on the size‐dependent effect of the ORR activity of MoS2, and a four‐electron transfer route was found. The exposed abundant Mo edges of the MoS2 nanoparticles were proven to be responsible for the high ORR catalytic activity, whereas the origin of the improved HER activity of the nanoparticles was attributed to the plentiful exposed S edges. This newly discovered process provides a simple protocol to produce inexpensive highly active MoS2 catalysts that could easily be scaled up. Hence, it opens up possibilities for wide applications of MoS2 nanoparticles in the fields of energy conversion and storage.  相似文献   

14.
电催化水裂解是一种可持续用于生产可再生氢能源的技术。然而,开发高效稳定、低成本的析氢电催化剂仍是一项具有挑战性的任务。多金属氧酸盐(多酸)是一种离散的金属氧簇合物,通常由氧配体和高价的钒(V)、钼(VI)、钨(VI)金属构成。由于多酸含有丰富的氧化还原活性金属中心,因此,近几年来,多酸在水裂解应用研究方面备受关注。本综述将聚焦于多酸在电催化水裂解析氢的应用研究进展。本文还突出强调了电催化析氢目前面临的主要问题,以及对多酸基催化剂及作为催化剂前体在电催化析氢方面的应用及发展前景做了展望。  相似文献   

15.
Clean and large‐scale production of hydrogen via water splitting triggered by active, robust, and low‐cost electrocatalysts is a promising and sustainable strategy for energy conversion and storage. In this study, a series of four‐coordinated chelating amine‐bound {Fe(NO)2}10 dinitrosyl iron complexes (DNICs) [(L)Fe(NO)2] were synthesized to investigate how the electronic structure of [Fe(NO)2] unit of DNICs was tailored to promote the electrocatalytic hydrogen evolution reaction (HER) triggered by the homogeneous DNICs' molecular catalysts and the heterogeneous DNIC‐derived electrodeposited‐film electrodes. The electrochemical studies demonstrate that HER onset potentials of those DNICs in neutral sodium sulfate aqueous solution are dependent on their IR ν(NO) stretching frequencies, indicating that the electron‐rich [Fe(NO)2] core modulated by the synergistic cooperation of the electron‐donating ability and steric effect of methyl‐/hydrogen‐substituted diamine‐coordinated ligands, presumably, benefits the formation of metal‐hydride intermediate to reduce the required onset potential. In contrast with homogeneous catalyst retaining its molecular integrity during the catalytic HER process, it is noticed that DNICs [(L)Fe(NO)2] act as the precursor of the active heterogeneous HER catalyst during the electrocatalytic HER process. It is presumed that the intermolecular hydrogen‐bonding interactions among DNICs [(L)Fe(NO)2] may control the particle sizes of DNIC‐derived electrodeposited film to modulate HER efficiency.  相似文献   

16.
Hydrogen storage in the form of intermediate artificial fuels such as methanol is important for future chemical and energy applications, and the electrochemical regeneration of hydrogen from methanol is thermodynamically favorable compared to direct water splitting. However, CO produced from methanol oxidation can adsorb to H2-evolution catalysts and drastically reduce activity. In this study, we explore the origins of CO immunity in Mo-containing H2-evolution catalysts. Unlike conventional catalysts such as Pt or Ni, Mo-based catalysts display remarkable immunity to CO poisoning. The origin of this behavior in NiMo appears to arise from the apparent inability of CO to bind Mo under electrocatalytic conditions, with mechanistic consequences for the H2-evolution reaction (HER) in these systems. This specific property of Mo-based HER catalysts makes them ideal in environments where poisons might be present.  相似文献   

17.
With the environmental pollution and non‐renewable fossil fuels, it is imperative to develop eco‐friendly, renewable, and highly efficient electrocatalysts for sustainable energy. Herein, a simple electrospinning process used to synthesis Mo2C‐embedded multichannel hollow carbon nanofibers (Mo2C‐MCNFs) and followed by the pyrolysis process. As prepared lotus root‐like nanoarchitecture could offer rich porosity and facilitate the electrolyte infiltration, the Mo2C‐MCNFs delivered favourable catalytic activity for HER and OER. The resultant catalysts exhibit low overpotentials of 114 mV and 320 mV at a current density of 10 mA cm?2 for HER and OER, respectively. Furthermore, using the Mo2C‐MCNFs catalysts as a bifunctional electrode toward overall water splitting, which only needs a small cell voltage of 1.68 V to afford a current density of 10 mA cm?2 in the home‐made alkaline electrolyzer. This interesting work presents a simple and effective strategy to further fabricating tunable nanostructures for energy‐related applications.  相似文献   

18.
Electrochemical water splitting to generate molecular hydrogen requires catalysts that are cheap, active, and stable, particularly for alkaline electrolyzers, where the cathodic hydrogen evolution reaction is slower in base than in acid even on platinum. Herein, we describe the synthesis of new hollow Chevrel‐phase NiMo3S4 and its alkaline hydrogen evolution reaction (HER) performance: onset potential of ?59 mV, Tafel slope of 98 mV per decade, and exchange current density of 3.9×10?2 mA cm?2. This Chevrel‐phase chalcogenide also demonstrates outstanding long‐term stability under harsh HER cycling conditions. Chevrel‐phase nanomaterials show promise as efficient, low‐cost catalysts for alkaline electrolyzers.  相似文献   

19.
Highly active, stable, and cheap Pt‐free catalysts for the hydrogen evolution reaction (HER) are under increasing demand for future energy conversion systems. However, developing HER electrocatalysts with Pt‐like activity that can function at all pH values still remains as a great challenge. Herein, based on our theoretical predictions, we design and synthesize a novel N,P dual‐doped carbon‐encapsulated ruthenium diphosphide (RuP2@NPC) nanoparticle electrocatalyst for HER. Electrochemical tests reveal that, compared with the Pt/C catalyst, RuP2@NPC not only has Pt‐like HER activity with small overpotentials at 10 mA cm−2 (38 mV in 0.5 m H2SO4, 57 mV in 1.0 m PBS and 52 mV in 1.0 m KOH), but demonstrates superior stability at all pH values, as well as 100 % Faradaic yields. Therefore, this work adds to the growing family of transition‐metal phosphides/heteroatom‐doped carbon heterostructures with advanced performance in HER.  相似文献   

20.
Single‐atom nickel dopants anchored to three‐dimensional nanoporous graphene can be used as catalysts of the hydrogen evolution reaction (HER) in acidic solutions. In contrast to conventional nickel‐based catalysts and graphene, this material shows superior HER catalysis with a low overpotential of approximately 50 mV and a Tafel slope of 45 mV dec?1 in 0.5 M H2SO4 solution, together with excellent cycling stability. Experimental and theoretical investigations suggest that the unusual catalytic performance of this catalyst is due to sp–d orbital charge transfer between the Ni dopants and the surrounding carbon atoms. The resultant local structure with empty C–Ni hybrid orbitals is catalytically active and electrochemically stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号