首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hall measurement of an electrodeposited Cu2O film is rendered difficult as the bilayer structure of semiconductor on top of a conductive substrate obviates the measurement. Here, we propose the use of a patterned Au on glass substrate in line/space configuration for the Hall measurement of electrodeposited Cu2O. A continuous, (111) oriented Cu2O film was electrodeposited on 8 μm/2 μm Au‐line/space on glass substrate and Hall measurement was performed. The room temperature Hall measurement of the Cu2O film on the patterned substrate indicates p‐type conduction with a hole concentration of 2.2 × 1017 cm?3 and mobility of 4.7 × 10?3 cm2 V?1 s?1. Additionally, the temperature dependent resistivity exhibits a negative slope that is characteristic of a semiconductor. Therefore, the measured electrical characteristics can be attributed to the electrodeposited Cu2O semiconductor film rather than the conductive substrate. This method can be applied for the Hall measurement of any other electrodeposited semiconductor by optimizing the line/space geometry of the conductive substrate.  相似文献   

2.
High-quality ZnO thin films were grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy. X-ray diffraction and transmission electron microscopy reveal that the ZnO films have high structural quality and an atomically sharp ZnO/Al2O3 interface. The full width at half maximum values of the 0002 and $30\bar{3}2$ ZnO ω-rocking curves are 467.8 and 813.5 arc sec for a 600 nm thick ZnO film. A screw dislocation density of 4.35×108 cm?2 and an edge dislocation density of 3.38×109 cm?2 are estimated by X-ray diffraction. The surface of the ZnO epilayers contains hexagonal pits, which can be observed in the Zn-polar ZnO. The films have a resistivity of 0.119 Ω?cm, an electron concentration of 6.85×1017 cm?3, and a mobility of 76.5 cm2?V?1?s?1 at room temperature. Low temperature photoluminescence measurements show good optical properties comparable to ZnO single crystals.  相似文献   

3.
Cu2CdSnS4 (CCdTS) thin films were synthesized using chemical spray pyrolysis deposition technique. The effect of various deposition times (20, 40, 60 min) on growth of these films was investigated. The as-synthesized Cu2CdSnS4 thin films were characterized by X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectroscopy, Raman spectroscopy and Hall Effect measurements. The XRD pattern of Cu2CdSnS4 structured in stannite phase with preferential orientations along (112) planes. Raman spectrum revealed very strong peak at about 333 cm?1. The films have the direct optical band gaps of 1.39–1.5 eV. The optimum hole mobility was found to be 3.212 × 101 cm2 v?1 s?1 for the film deposited on 60 min. The electronic structure and optical properties of the stannite structure Cu2CdSnS4 were obtained by ab initio calculations using the Korringa–Kohn–Rostoker method combined with the Coherent Potential Approximation (CPA), as well as CPA confirms our results.  相似文献   

4.
Amorphous MgO thin films were prepared by pulsed laser deposition (PLD) under various oxygen pressures. The structural, magnetic, and optical properties of the films were investigated. All as-deposited samples exhibit room temperature ferromagnetism, which depend strongly on oxygen pressure. It is found that the saturation magnetization (M s) initially increases with the oxygen pressure, the maximum M s of 8.57 emu/cm3 is obtained for the MgO film deposited under an oxygen pressure of 2 mTorr. However, the M s significantly reduces at higher oxygen pressures. Further X-ray photoelectron spectroscopy and photoluminescence demonstrate that the long-range magnetic order in amorphous MgO films can be attributed to the nonstoichiometry effect and the presence of Mg vacancies.  相似文献   

5.
Ba0.7Sr0.3TiO3:Eu ferroelectric films were deposited on quartz substrates by pulsed laser deposition. The linear absorption coefficient and the linear refractive index calculated from the transmission spectrum at 532 nm were found to be 1.67×104 cm?1 and 1.82 respectively. The room temperature photoluminescence shows the characteristic emission of Eu3+ ions. The nonlinear optical properties of the film were investigated by a single beam Z-scan setup. The negative nonlinear refractive index and two photon absorption coefficient was found to be ?1.508×10?6 m2/GW and 240 m/GW respectively. The real and imaginary part of the third order susceptibility of the thin films is 2.58×10?17 m2/V2 and 1.16×10?16 m2/V2 respectively. The BST:Eu thin films show good optical limiting property.  相似文献   

6.
A novel high-performance thermistor material based on Co-doped ZnO thin films is presented. The films were deposited by the pulsed laser deposition technique on Si (111) single-crystal substrates. The structural and electronic transport properties were correlated as a function of parameters such as substrate temperature and Co-doped content for Zn1?x Co x O (x=0.005,0.05,0.10 and 0.15) to prepare these films. The Zn1?x Co x O films were deposited at various substrate temperatures between 20 and 280 °C. A value of 20 %/K for the negative temperature coefficient of resistance (TCR) with a wide range near room temperature was obtained. It was found that both TCR vs. temperature behavior and TCR value were strongly affected by cobalt doping level and substrate temperature. In addition, a maximal TCR value of over 20 %?K?1 having a resistivity value of 3.6 Ω?cm was observed in a Zn0.9Co0.1O film near 260 °C, which was deposited at 120 °C and shown to be amorphous by X-ray diffraction. The result proved that the optimal Co concentration could help us to achieve giant TCR in Co-doped ZnO films. Meanwhile, the resistivities of the films ranged from 0.4 to 270 Ω?cm. A Co-doped ZnO/Si film is a strong candidate of thermometric materials for non-cooling and high-performance bolometric applications.  相似文献   

7.
Electrodeposition was used to deposit Cu2O thin films on ITO substrates. Photoresponse of the film clearly indicated n-type behavior of Cu2O in photoelectrochemical cells. The temperature dependence of photoluminescence (PL) revealed that the spectra consist of donor-acceptor pair emissions and the recombination between electrons bound to donors and free holes. We observed that the dominant intrinsic defect, oxygen vacancies, creates a donor energy level at 0.38 eV below the bottom of the conduction band. As a result, this donor level acts as a center for both PL emissions and to produce n-type conductivity in the electrodeposited Cu2O films. In addition, an acceptor energy level at 0.16 eV from the top of the valence band was observed.  相似文献   

8.
Undoped SnO2 thin films have been deposited on amorphous glass substrates with different precursor solution volume (10, 15, 20 and 25 ml) using simple and cost-effective nebulized spray pyrolysis technique. The influence of precursor solution on structural, optical, photoluminescence and electrical properties had been studied. The X-ray diffraction spectra prove the polycrystalline nature of SnO2 with tetragonal structure. All the films show a preferred growth orientation along (110) diffraction plane. The average transmittance of SnO2 thin films varied between 82 and 75% in the visible as well as IR region. The band gap energy decreases from 3.74 to 3.64 eV corresponding to direct transitions with the precursor solution volume had increased from 10 to 20 ml and then increased as 3.72 eV for 25 ml. SEM pictures demonstrated polyhedrons like grains. EDX confirmed the existence of Sn and O elements in all the prepared SnO2 thin films. Photoluminescence spectra at room temperature revealed that the four emission bands in all the samples such as sharp dominant peak at 361 nm with shoulder peak at 377 nm (UV region), a broad and low intensity peak at 492 nm (blue region) and 519 nm (green region). The electrical parameters were examined by Hall effect measurements, which demonstrated that the film prepared at 20 ml precursor solution volume possess minimum resistivity 2.76?×?10?3 Ω-cm with activation energy 0.10 eV and maximum figure of merit 1.54?×?10?2 (Ω/sq)?1.  相似文献   

9.
ABSTRACT

Crystalline silicon oxy-nitride (SiON) composite films are deposited on Si substrate for multiple (5, 15, 25 and 50) focus shots (FS) by plasma focus device. The X-rays diffraction patterns reveal the development of various diffraction peaks related to Si, Si3N4, and SiO2 phases which confirms the formation of SiON composite film. The intensity of Si3N4 (1 0 2) plane is linearly increased with the increase of FS. The Si3N4 (1 0 2) phase does not nucleate for 5 FS. Raman analysis confirms the formation of β–Si–N phase. Raman and Fourier transform infrared spectroscopy analysis reveals that the strength of chemical bonds like Si–N, Si–O formed during the deposition process of SiON composite films is associated with the bonds intensity which in turn depends on the number of FS. The field emission scanning electron microscopic analysis reveals that the surface morphology like size, shape and distribution of micro/nano-dimensional particles, film compactness and the formation of micro-rods, micro-teethes and micro-tubes of SiON composite films is entirely associated with the rise in substrate surface transient temperature which in turn depends on the increasing number of FS. The EDX spectrum confirms the presence of Si (22.5?±?4.7 at. %), N (13.4?±?4.5 at. %) and O (54.7?±?11.3 at. %) in the SiON composite film. The thickness of SiON composite film deposited for 50 FS is found to ~15.47?µm.  相似文献   

10.
《Composite Interfaces》2013,20(9):863-872
The ZnO films doped with 3 wt% phosphorus (P) were produced by activating phosphorus doped ZnO (ZnO:P) thin films in oxygen (O2) ambient at 600°C for 30, 60, 90 and 120 min, respectively. As-deposited films doped with phosphorus are highly conductive and n type. All the films showed p-type conduction after annealing, in an O2 ambient atmosphere. The activation energies of the phosphorus dopant in the p-type ZnO under O2 ambient gases indicate that phosphorus substitution on the O site yielded a deep level in the gap. With a further increase of the annealed durations, the crystalline quality of the ZnO:P sample is degraded. The best p-type ZnO:P film deposited at 600°C for 30 min shows a resistivity of 1.85 Ω cm and a relatively high hole concentration of 5.1 × 1017cm–3 at room temperature. The films exhibit a polycrystalline hexagonal wurtzite structure without preferred orientation. The mean grain sizes are calculated to be about 60, 72, 78, 85 and 90 nm for the p-type ZnO films prepared at 600°C for 30, 60, 90 and 120 min, respectively. Room temperature photoluminescence (PL) spectra of the ZnO film exhibit two emission bands — paramount excitonic ultraviolet (UV) emission and weak deep level visible emission. The excellent emission from the film annealed at 600°C for 30 min is attributed to the good crystalline quality of the p-type ZnO film and the low rate of formation of intrinsic defects at such short duration. The visible emission consists of two components in the green range.  相似文献   

11.
Ag掺杂p型ZnO薄膜及其光电性能研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用超声喷雾热分解法在石英衬底上以醋酸锌水溶液为前驱体,以硝酸银水溶液为Ag掺杂源生长了Ag掺杂ZnO(ZnO:Ag)薄膜.研究了衬底温度对所得ZnO:Ag薄膜的晶体结构、电学和光学性质的影响规律.所得ZnO:Ag薄膜结构良好,在室温光致发光谱中检测到很强的近带边紫外发光峰,透射光谱中观测到非常陡峭的紫外吸收截止边和较高的可见光区透过率,表明薄膜具有较高的晶体质量与较好的光学特性.霍尔效应测试表明,在500℃下获得了p型导电的ZnO:Ag薄膜,载流子浓度为5.30×1015cm关键词: ZnO:Ag薄膜 p型掺杂 超声喷雾热分解 霍尔效应  相似文献   

12.
The effect of annealing atmosphere on microstructural and photoluminescence characteristics of multiferroic BiFeO3 (BFO) thin films deposited by pulsed laser deposition (PLD) technique is reported. The films annealed in oxygen environment showed improved microstructure and photoluminescence (PL) characteristics. The PL spectra of oxygen-annealed BFO thin films at room temperature show a strong emission in the blue region. A plot of (αE)2 vs. photon energy (E) (α-absorption coefficient) and the linear extrapolation to (αE)2=0 indicates a direct gap at 2.69±0.02 eV, which is in agreement with the previous reports. The results obtained in this study are accordingly expected to facilitate the understanding and optimization of BFO thin films for photovoltaic applications.  相似文献   

13.
Auger-electron spectroscopy, electron-energy loss spectroscopy, low-energy electron diffraction, and atomic-force microscopy are employed to investigate the growth mechanism, composition, structural and phase states, and morphology of Cu films (0.1–1 nm thick) deposited on a Si(001)-2 × 1 surface at a lower temperature of Cu evaporation (900°C) and room temperature of a substrate. The Cu film phase is shown to start growing on the Si(001)−2 × 1 surface after three Cu monolayers (MLs) are condensed. It has been revealed that atoms of Cu and Si(001) are mixed, a Cu2Si film phase is formed, and, thereafter, Cu3Si islands arise at a larger coating thickness. Annealing of the first Cu ML leads to reconstruction of the Si(001)-1 × 1-Cu surface layer, thereby modifying the film growth mechanism. As a consequence, the Cu2Si film phase arises when the thickness reaches two to four MLs, and bulk Cu3Si silicide islands begin growing at five to ten MLs. When islands continue to grow, their height and density reach, respectively, 1.5 nm and 2 × 1011 cm−2 and the island area is 70% of the substrate surface at a thickness of ten MLs.  相似文献   

14.
Gallium antimonide (GaSb) films were deposited onto fused silica and n-Si (100) substrates by coevaporating Ga and Sb from appropriate evaporation sources. The films were polycrystalline in nature. The size and the shape of the grains varied with the change in the substrate temperature during deposition. The average surface roughness of the films was estimated to be 10 nm. Grain boundary trap states varied between 2×1012 and 2.2×1012 cm?2 while barrier height at the grain boundaries varied between 0.09 eV and 0.10 eV for films deposited at higher temperatures. Stress in the films decreased for films deposited at higher temperatures. XPS studies indicated two strong peaks located at ~543 eV and ~1121 eV for Sb 3d3/2 and Ga 2p3/2 core-level spectra, respectively. The PL spectra measured at 300 K was dominated by a strong peak located ~0.55 eV followed by two low intensity peaks ~0.63 eV and 0.67 eV. A typical n-Si/GaSb photovoltaic cell fabricated here indicated V oc~311 mV and J~29.45 mA/cm2, the density of donors (N d)~3.87×1015 cm?3, built in potential (V bi)~0.48 V and carrier life time (τ)~28.5 ms. Impedance spectroscopy measurements indicated a dielectric relaxation time ~100 μs.  相似文献   

15.
BaTiO3 thin films were deposited by pulsed laser deposition on Pt–Si at different laser pulse repetition frequencies. X-ray diffraction spectra show that preferred oriented films can be grown by adjusting the pulse repetition frequency. Enhanced dielectric and ferroelectric properties obtained in films deposited at 1 Hz is attributed to preferred orientation, low strain and homogeneous grain distribution. The films deposited at 1 Hz show an impressive remanent polarization of 21.4 μC/cm2 with a coercive field of 70.0 kV/cm. The shift in Curie temperature, which stems from changing the laser pulse repetition frequency, is associated with the strain state in the film.  相似文献   

16.
Areas of single-layer MoS2 film can be prepared in a tube furnace without the need for temperature control. The films were characterized by means of Raman spectroscopy, photoluminescence, low-energy electron diffraction and microscopy, and X-ray photoelectron spectroscopy and mapping. Transport measurements show n-doped material with a mobility of 0.26 cm2 V-1 s-1.  相似文献   

17.
In this work, three different preparation conditions were used for testing the performance of p-conducting copper phthalocyanine (CuPc) organic field-effect transistors (OFETs). The charge carrier mobility (μ sat=(1.5±0.6)×10?3 cm2/V?s) of the CuPc OFETs with the CuPc film deposited while keeping the substrate at room temperature could be improved when the gate dielectric was modified by a self-assembled monolayer of n-octadecyltrichlorosilane (μ sat=(3.8±0.4)×10?3 cm2/V?s) or when elevated temperatures were applied to the substrate (T S,av=127 °C) during the deposition of the organic film (μ sat=(6.5±0.8)×10?3 cm2/V?s). For the latter case, the dependence of the mobility and threshold voltage with increasing thickness of the organic film was tested—above 13 nm film thickness, no further significant increase of the hole mobility or change in the threshold voltage could be observed. The environmental stability of the OFETs was checked by performing ex situ measurements immediately as the sample was exposed to atmosphere and after 40 days of exposure. The effect of the different preparation conditions on the morphology of the organic films prepared in this work is also discussed in this context.  相似文献   

18.
The zirconium oxide (ZrO2) thin films are deposited on Si (100) and quartz substrates at various substrate temperatures (room temperature–973 K) at an optimized oxygen partial pressure of 3×10?2 mbar using pulsed laser deposition technique. The effect of substrate temperature on microstructural, optical and mechanical properties of the films is investigated. The X-ray diffraction studies show that the films deposited at temperatures ≤773 K are monoclinic, while the films deposited at temperatures ≥873 K show both monoclinic and tetragonal phases. Tetragonal phase content increases with the increase of substrate temperatures. The surface morphology and roughness are investigated using atomic force microscope in contact mode. The optical properties of the films show that the refractive indices (at 550 nm) are found to increase from 1.84 to 2.35 as the temperature raises from room temperature (RT) to 973 K. Nanoindentation measurements show that the hardness of the films is 11.8 and 13.7 GPa for the films deposited at 300 and 973 K, respectively.  相似文献   

19.
A nanocrystalline and porous p-polyaniline/n-WO3 dissimilar heterojunction at ambient temperature is reported. The high-quality and well-reproducible conjugated polymer composite films have been fabricated by oxidative polymerization of anilinium ion on predeposited WO3 thin film by chemical bath deposition followed by thermal annealing at 573 K for 1 h. Atomic force microscopy (AFM) analyses reveal a homogenous but irregular cluster of faceted spherically shaped grains with pores. The scanning electron microscopy confirms the porous network of grains, which is in good agreement with the AFM result. The optical absorption analysis of polyaniline/WO3 hybrid films showed that direct optical transition exist in the photon energy range 3.50–4.00 eV with bandgap of 3.70 eV. The refractive index developed peak at 445 nm in the dispersion region while the high-frequency dielectric constant, ? , and the carrier concentration to effective mass ratio, N/m*, was found to be 1.58 and 1.10 × 1039 cm?3, respectively. The temperature dependence of electrical resistivity of the deposited films follows the semiconductor behavior while the C–V characteristics (Mott–Schottky plots) show that the flat band potential was ?791 and 830 meV/SCE for WO3 and polyaniline.  相似文献   

20.
Fe implanted SnO2 films (5 × 1016 and 1 × 1017 57Fe ions/cm2) characterized by conversion electron Mossbauer spectroscopy (CEMS) are reviewed. The substrate temperatures affect the growth of precipitated iron oxides. The Fe ion implanted film at room temperature (RT) shows no Kerr effect and no magnetic sextet in CEM spectra. The SnO2 film implanted with 57Fe at the substrate temperature of 300 °C show a small Kerr effect although the magnetic sextet is not observed, but post-annealing results in the disappearance of the Kerr effect. This magnetism is considered to be due to defect induced magnetism. Some samples were measured by CEMS at 15 K. SnO2 (0.1 at %Sb and 3 at %Sb) films, implanted at 500 °C and the post-annealed samples, show RT ferromagnetism due to formation of clusters of magnetite and maghemite, respectively. The layer by layer analysis of these films within 100 nm in thickness has been done by depth sensitive CEMS (DCEMS) using a He + 5 % CH4 gas counter. The structures and compositions of Fe implanted SnO2 films, and the effects due to post-annealing were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号