首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Let U be a UHF-algebra of Glimm type n, and {αg: g?G} a strongly continuous group of 1-automorphisms of product type on U, for G compact. Let Uα be the C1-subalgebra of fixed elements of U. We show that any extremal normalized trace on Uα arises as the restriction of a symmetric product state ? on U of the form ? = ?k?1 ω. As an example we classify the extremal traces on Uα for the case G = SU(n), αg = ?k ? 1 Ad(g).  相似文献   

2.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

3.
Let n denote the sample size, and let ri ∈ {1,…,n} fulfill the conditions ri ? ri?1 ≥ 5 for i = 1,…,k. It is proved that the joint normalized distribution of the order statistics Zri:n, i = 1,…,k, is independent of the underlying probability measure up to a remainder term of order O((kn)12). A counterexample shows that, as far as central order statistics are concerned, this remainder term is not of the order O((kn)12) if ri ? ri?1 = 1 for i = 2,…,k.  相似文献   

4.
Given k directed graphs G1,…,Gk the Ramsey number R(G1,…, Gk) is the smallest integer n such that for any partition (U1,…,Uk) of the arcs of the complete symmetric directed graph Kn, there exists an integer i such that the partial graph generated by U1 contains G1 as a subgraph. In the article we give a necessary and sufficient condition for the existence of Ramsey numbers, and, when they exist an upper bound function. We also give exact values for some classes of graphs. Our main result is: R(Pn,….Pnk-1, G) = n1…nk-1 (p-1) + 1, where G is a hamltonian directed graph with p vertices and Pni denotes the directed path of length nt  相似文献   

5.
Let kn ? kn?1 ? … ? k1 be positive integers and let (ij) denote the coefficient of xi in Πr=1j (1 + x + x2 + … + xkr). For given integers l, m, where 1 ? l ? kn + kn?1 + … + k1 and 1 ? m ? (nn), it is shown that there exist unique integers m(l), m(l ? 1),…, m(t), satisfying certain conditions, for which m = (m(l)l + (m(l?1)l?1) + … + (m(t)t). Moreover, any m l-subsets of a multiset with ki elements of type i, i = 1, 2,…, n, will contain at least (m(l)l?1) + (m(l?1)l?2) + … + (m(t)t?1 different (l ? 1)-subsets. This result has been anticipated by Greene and Kleitman, but the formulation there is not completely correct. If k1 = 1, the numbers (ji) are binomial coefficients and the result is the Kruskal-Katona theorem.  相似文献   

6.
Let A be an n-square normal matrix over C, and Qm, n be the set of strictly increasing integer sequences of length m chosen from 1,…, n. For α,βQm, n denote by A[α|β] the submatrix obtained from A by using rows numbered α and columns numbered β. For k∈{0,1,…,m} write z.sfnc;αβ|=k if there exists a rearrangement of 1,…,m, say i1,…,ik, ik+1,…,im, such that α(ij)=β(ij), j=1,…,k, and {α(ik+1),…,α(im)};∩{β(ik+1),…,β(im)}=ø. Let
be the group of n-square unitary matrices. Define the nonnegative number
?k(A)= maxU∈|det(U1AU) [α|β]|
, where |αβ|=k. Theorem 1 establishes a bound for ?k(A), 0?k<m?1, in terms of a classical variational inequality due to Fermat. Let A be positive semidefinite Hermitian, n?2m. Theorem 2 leads to an interlacing inequality which, in the case n=4, m=2, resolves in the affirmative the conjecture that
?m(A)??m?1(A)????0(A)
.  相似文献   

7.
Let 1?k1?k2?…?kn be integers and let S denote the set of all vectors x = (x1, …, xn with integral coordinates satisfying 0?xi?ki, i = 1,2, …, n; equivalently, S is the set of all subsets of a multiset consisting of ki elements of type i, i = 1,2, …, n. A subset X of S is an antichain if and only if for any two vectors x and y in X the inequalities xi?yi, i = 1,2, …, n, do not all hold. For an arbitrary subset H of S, (i)H denotes the subset of H consisting of vectors with component sum i, i = 0, 1, 2, …, K, where K = k1 + k2 + …kn. |H| denotes the number of vectors in H, and the complement of a vector x?S is (k1-x1, k2-x2, …, kn -xn). What is the maximal cardinality of an antichain containing no vector and its complement? The answer is obtained as a corollary of the following theorem: if X is an antichain, K is even and|(12K)X| does not exceed the number of vectors in (12K)S with first coordinate different from k1, then
i=0Ki≠12K|(i)X||(i)S|+|(12K)X||(12K-1)S|?1
.  相似文献   

8.
Let π = (a1, a2, …, an), ? = (b1, b2, …, bn) be two permutations of Zn = {1, 2, …, n}. A rise of π is pair ai, ai+1 with ai < ai+1; a fall is a pair ai, ai+1 with ai > ai+1. Thus, for i = 1, 2, …, n ? 1, the two pairs ai, ai+1; bi, bi+1 are either both rises, both falls, the first a rise and the second a fall or the first a fall and the second a rise. These possibilities are denoted by RR, FF, RF, FR. The paper is concerned with the enumeration of pairs π, p with a given number of RR, FF, RF, FR. In particular if ωn denotes the number of pairs with RR forbidden, it is proved that 0ωnznn!n! = 1?(z), ?(z) = ∑0(-1) nznn!n!. More precisely if ω(n, k) denotes the number of pairs π, p with exactly k occurences of RR(or FF, RF, FR) then 1 + ∑n=1znn!n!n?1k=0 ω(n, k)xk = (1 ? x)(?(z(1 ? x)) ? x).  相似文献   

9.
Let U1, U2,… be a sequence of independent, uniform (0, 1) r.v.'s and let R1, R2,… be the lengths of increasing runs of {Ui}, i.e., X1=R1=inf{i:Ui+1<Ui},…, Xn=R1+R2+?+Rn=inf{i:i>Xn?1,Ui+1<Ui}. The first theorem states that the sequence (32n)12(Xn?2n) can be approximated by a Wiener process in strong sense.Let τ(n) be the largest integer for which R1+R2+?+Rτ(n)?n, R1n=n?(R1+R2+?+Rτ(n)) and Mn=max{R1,R2,…,Rτ(n),R1n}. Here Mn is the length of the longest increasing block. A strong theorem is given to characterize the limit behaviour of Mn.The limit distribution of the lengths of increasing runs is our third problem.  相似文献   

10.
We list and discuss published programs for best approximation of functions by linear and nonlinear families in all standard forms.In this note we list and discuss the published programs for obtaining best approximations. Let X be a set on which we wish to approximate. Most sets will be finite (an equivalent terms is discrete). Let 6 6 be a norm on the continuous functions on X. Let G be a familiy of continuous functions on X. For a given basis {φ1…,φn}, the linear family G is the set of all functions of the form
L(A,x)=k=1nakφk(x)
The problem of best approximation is given a continuous function f, to find g1 to minimize e(g) = ∥f-g∥ over g?G. Such g1 is called a best approximation to f.Discrete linear approximation problems are sometimes formulated as solution of an overdetermined system of linear equations Ax = b with respect to a norm where aij = φj(xi) and bi = f(x)i).  相似文献   

11.
Let S be a Dirichlet form in L2(Ω; m), where Ω is an open subset of Rn, n ? 2, and m a Radon measure on Ω; for each integer k with 1 ? k < n, let Sk be a Dirichlet form on some k-dimensional submanifold Ωk of Ω. The paper is devoted to the study of the closability of the forms E with domain C0(Ω) and defined by: (?,g)=E(?, g)+ ip=1Eki(?ki, gki) where 1 ? kp < ? < n, and where ?ki, gki denote restrictions of ?, g in C0(Ω) to Ωki. Conditions are given for E to be closable if, for each i = 1,…, p, one has ki = n ? i. Other conditions are given for E to be nonclosable if, for some i, ki < n ? i.  相似文献   

12.
If m and n are positive integers then let S(m, n) denote the linear space over R whose elements are the real-valued symmetric n-linear functions on Em with operations defined in the usual way. If U is a function from some sphere S in Em to R then let U(i)(x) denote the ith Frechet derivative of U at x. In general U(i)(x)∈S(m,i). In the paper “An Iterative Method for Solving Nonlinear Partial Differential Equations” [Advances in Math. 19 (1976), 245–265] Neuberger presents an iterative procedure for solving a partial differential equation of the form
AUn(x)=F(x, U(x), U′(x),…,Uk(x))
, where k > n, U is the unknown from some sphere in Em to R, A is a linear functional on S(m, n), and F is analytic. The defect in the theory presented there was that in order to prove that the iterates converged to a solution U the condition k ? n2 was needed. In this paper an iteration procedure that is a slight variation on Neuberger's procedure is considered. Although the condition k ? n2 cannot as yet be eliminated, it is shown that in a broad class of cases depending upon the nature of the functional A the restriction k ? n2 may be replaced by the restriction k ? 3n4.  相似文献   

13.
Let A be an n × n normal matrix over C, and Qm, n be the set of strictly increasing integer sequences of length m chosen from 1,…,n. For α, β ? Qm, n denote by A[α|β] the submatrix obtained from A by using rows numbered α and columns numbered β. For k ? {0, 1,…, m} we write |αβ| = k if there exists a rearrangement of 1,…, m, say i1,…, ik, ik+1,…, im, such that α(ij) = β(ij), i = 1,…, k, and {α(ik+1),…, α(im) } ∩ {β(ik+1),…, β(im) } = ?. A new bound for |detA[α|β ]| is obtained in terms of the eigenvalues of A when 2m = n and |αβ| = 0.Let Un be the group of n × n unitary matrices. Define the nonnegative number
where | αβ| = k. It is proved that
Let A be semidefinite hermitian. We conjecture that ρ0(A) ? ρ1(A) ? ··· ? ρm(A). These inequalities have been tested by machine calculations.  相似文献   

14.
For each natural number n, let a0(n) = n, and if a0(n),…,ai(n) have already been defined, let ai+1(n) > ai(n) be minimal with (ai+1(n), a0(n) … ai(n)) = 1. Let g(n) be the largest ai(n) not a prime or the square of a prime. We show that g(n) ~ n and that g(n) > n + cn12log(n) for some c > 0. The true order of magnitude of g(n) ? n seems to be connected with the fine distribution of prime numbers. We also show that “most” ai(n) that are not primes or squares of primes are products of two distinct primes. A result of independent interest comes of one of our proofs: For every sufficiently large n there is a prime p < n12 with [np] composite.  相似文献   

15.
By a result of L. Lovász, the determination of the spectrum of any graph with transitive automorphism group easily reduces to that of some Cayley graph.We derive an expression for the spectrum of the Cayley graph X(G,H) in terms of irreducible characters of the group G:
λti,1+…+λti,ni=g1,…,gt∈HXiΠs=1tgs
for any natural number t, where ξi is an irreducible character (over C), of degree ni , and λi,1 ,…, λi,ni are eigenvalues of X(G, H), each one ni times. (σni2 = n = | G | is the total'number of eigenvalues.) Using this formula for t = 1,…, ni one can obtain a polynomial of degree ni whose roots are λi,1,…,λi,ni. The results are formulated for directed graphs with colored edges. We apply the results to dihedral groups and prove the existence of k nonisomorphic Cayley graphs of Dp with the same spectrum provided p > 64k, prime.  相似文献   

16.
Let π=(π1, π2,…,πn) denote a permutation of Zn = {1, 2,…, n}. The pair (πi, πi+1) is a rise if πi<πi+1 or a fall if πi>πi+1. Also a conventional rise is counted at the beginning of π and a conventional fall at the end. Let k be a fixed integer ≥ 1. The rise πi,πi+1 is said to be in a in a j (mod k) position if ij (mod k); similarly for a fall. The conventional rise at the beginning is in a 0 (mod k) position, while the conventional fall at the end is in an n (mod k) position. Let Pn≡Pn(r0,…,rk?1,?0,…,?;k?1) denote the number of permutations having ri rises i (mod k) positions and ?;i falls in i (mod k) positions. A generating function for Pn is obtained. In particular, for k = 2 the generating function is quite explicit and also, for certain special cases when k = 4.  相似文献   

17.
The Dirichlet integral provides a formula for the volume over the k-dimensional simplex ω={x1,…,xk: xi?0, i=1,…,k, s?∑k1xi?T}. This integral was extended by Liouville. The present paper provides a matrix analog where now the region becomes Ω={V1,…,Vk: Vi>0, i=1,…,k, 0?∑Vi?t}, where now each Vi is a p×p symmetric matrix and A?B means that A?B is positive semidefinite.  相似文献   

18.
Let A be the Clifford algebra constructed over a quadratic n-dimensional real vector space with orthogonal basis {e1,…, en}, and e0 be the identity of A. Furthermore, let Mk(Ω;A) be the set of A-valued functions defined in an open subset Ω of Rm+1 (1 ? m ? n) which satisfy Dkf = 0 in Ω, where D is the generalized Cauchy-Riemann operator D = ∑i = 0m ei(??xi) and k? N. The aim of this paper is to characterize the dual and bidual of Mk(Ω;A). It is proved that, if Mk(Ω;A) is provided with the topology of uniform compact convergence, then its strong dual is topologically isomorphic to an inductive limit space of Fréchet modules, which in its turn admits Mk(Ω;A) as its dual. In this way, classical results about the spaces of holomorphic functions and analytic functionals are generalized.  相似文献   

19.
Let Ω denote a simply connected domain in the complex plane and let K[Ω] be the collection of all entire functions of exponential type whose Laplace transforms are analytic on Ω′, the complement of Ω with respect to the sphere. Define a sequence of functionals {Ln} on K[Ω] by Ln(f) = 12πiΓ gn(ζ) F(ζ) dζ, where F denotes the Laplace transform of f, Γ ? Ω is a simple closed contour chosen so that F is analytic outside and on Ω, and gn is analytic on Ω. The specific functionals considered by this paper are patterned after the Lidstone functions, L2n(f) = f(2n)(0) and L2n + 1(f) = f(2n)(1), in that their sequence of generating functions {gn} are “periodic.” Set gpn + k(ζ) = hk(ζ) ζpn, where p is a positive integer and each hk (k = 0, 1,…, p ? 1) is analytic on Ω. We find necessary and sufficient conditions for f ∈ k[Ω] with Ln(f) = 0 (n = 0, 1,…). DeMar previously was able to find necessary conditions [7]. Next, we generalize {Ln} in several ways and find corresponding necessary and sufficient conditions.  相似文献   

20.
Let N(n,i) = (k,…,kn,n?ik)ci/i, i = O.…,[n/k]. We prove that the random variable Xn such that P(Xn = i) = N(n, i)Σj N(n, j) has asymptotically (n → ∞) a normal distribution and we give some combinatorial applications of this result.We also improve a result of Godsil [3] dealing with matchings in graph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号