首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Results of a parametric study of steady asymmetric flows are analyzed. Three-dimensional unsteady equations of hydromechanics for a compressible medium are solved by a time-dependent method. The range of the characteristic Reynolds number Re = 60–350 is considered. It is shown that a symmetric flow becomes asymmetric at Re = 90. This value can be considered as a threshold value for air. In the examples considered, the upper separation region is always smaller than the lower separation region owing to flow asymmetry in the vicinity of the left boundary of the domain of integration. The dependence of the separation region size on the Reynolds number is found. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 11–19, May–June, 2008.  相似文献   

2.
Shallow and deep dynamic stall for flapping low Reynolds number airfoils   总被引:1,自引:1,他引:0  
We consider a combined experimental (based on flow visualization, direct force measurement and phase-averaged 2D particle image velocimetry in a water tunnel), computational (2D Reynolds-averaged Navier–Stokes) and theoretical (Theodorsen’s formula) approach to study the fluid physics of rigid-airfoil pitch–plunge in nominally two-dimensional conditions. Shallow-stall (combined pitch–plunge) and deep-stall (pure-plunge) are compared at a reduced frequency commensurate with flapping-flight in cruise in nature. Objectives include assessment of how well attached-flow theory can predict lift coefficient even in the presence of significant separation, and how well 2D velocimetry and 2D computation can mutually validate one another. The shallow-stall case shows promising agreement between computation and experiment, while in the deep-stall case, the computation’s prediction of flow separation lags that of the experiment, but eventually evinces qualitatively similar leading edge vortex size. Dye injection was found to give good qualitative match with particle image velocimetry in describing leading edge vortex formation and return to flow reattachment, and also gave evidence of strong spanwise growth of flow separation after leading-edge vortex formation. Reynolds number effects, in the range of 10,000–60,000, were found to influence the size of laminar separation in those phases of motion where instantaneous angle of attack was well below stall, but have limited effect on post-stall flowfield behavior. Discrepancy in lift coefficient time history between experiment, theory and computation was mutually comparable, with no clear failure of Theodorsen’s formula. This is surprising and encouraging, especially for the deep-stall case, because the theory’s assumptions are clearly violated, while its prediction of lift coefficient remains useful for capturing general trends.  相似文献   

3.
A wind-tunnel study of the influence of flow suction on laminar boundary-layer separation behind a two-dimensional step on the surface is performed. Hot-wire measurements are carried out at low subsonic flow velocities. It is demonstrated that this method of flow control allows suppressing the formation of large-scale vortices determined by global stability properties of the separation region. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 4, pp. 60–65, July–August, 2006.  相似文献   

4.
Shallow water waves and a host of long wave phenomena are commonly investigated by various models of nonlinear evolution equations. Examples include the Korteweg–de Vries, the Camassa–Holm, and the Whitham–Broer–Kaup (WBK) equations. Here a generalized WBK system is studied via the multi-linear variable separation approach. A special class of wave profiles with discontinuous derivatives (“peakons”) is developed. Peakons of various features, e.g. periodic, pulsating or fractal, are investigated and interactions of such entities are studied. The project supported by the National Natural Science Foundation of China (10475055, 10547124 and 90503006), and the Hong Kong Research Grant Council Contract HKU 7123/05E.  相似文献   

5.
The separation of a viscous fluid flow by means of a device operating on the centrifugal principle was modeled. Parameters of the device with a specified separation size were obtained in a series of numerical experiments. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 4, pp. 108–112, July–August, 2008.  相似文献   

6.
The results of measurements of the drag of axisymmetric bodies with smooth and ribbed central cylindrical sections and affinely similar trailing edges of various lengths are given. The experimental data were obtained for zero angle of attack and the numbers M=0.25–0.85 and Re=107–2.4·107 (calculated on the basis of the length of the body without the trailing section). The trailing-edge flow separation was visualized by the oil film method. It is shown that ribbing can lead to a decrease in drag due not only to a reduction in turbulent friction but also to reduction of the separation zone on the smooth trailing section of the body. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 163–168, January–February, 1998. The work was carried out with the support of the International Science-Technology Center (project No. 199-95).  相似文献   

7.
A problem of modification of the classical airfoils that ensure the absence of separation in a subsonic ideal-gas flow in a specified range of angles of attack is solved by a numerical-analytical method based on the quasi-solution of inverse boundary-value problems of aerohydrodynamics and Kármán-Jiang formulas. Loitsyanskii’s criterion of the non-separated flow is used to determine the boundary-layer separation point. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 6, pp. 99–106, November–December, 2008.  相似文献   

8.
The interaction between a normally impinging shock wave and the boundary layer on a plate with slip is studied in the neighborhood of the leading edge using various experimental methods, including special laser technology, to visualize the supersonic conical gas flows. It is found that in the “non-free” interaction, when the leading edge impedes the propagation of the boundary layer separation line upstream, the structure of the disturbed flow is largely identical to that in the developed “free” interaction, but with higher parameter values and gradients in the leading part of the separation zone. The fundamental property of developed separation flows, namely, coincidence of the values of the pressure “plateau” in the separation zone and the pressure behind the oblique shock above the separation zone of the turbulent boundary layer, is conserved. Moscow. e-mail: ostap@inmech.msu.su. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 57–69, May–June, 2000. The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 97-01-00099).  相似文献   

9.
Scanning PIV is applied to a laminar separation bubble to investigate the spanwise structure and dynamics of the roll-up of vortices within the bubble. The laminar flow separation with turbulent reattachment is studied on the suction side of an airfoil SD7003 at Reynolds numbers of 20,000–60,000. The flow is recorded with a CMOS high-speed camera in successive light-sheet planes over a time span of 1–2 s to resolve the temporal evolution of the flow in the different planes. The results show the quasi-periodic development of large vortex-rolls at the downstream end of the separation bubble, which have a convex structure and an extension of 10–20% chord length in the spanwise direction. These vortices possess an irregular spanwise pattern. The evolution process of an exemplary vortex structure is shown in detail starting from small disturbances within the separation bubble transforming into a compact vortex at the downstream end of the separation bubble. As the vortex grows in size and strength it reaches a critical state that leads to an abrupt burst of the vortex with a large ejection of fluid into the mean flow.  相似文献   

10.
The three-dimensional mixed problem of the separation impact of a circular disk floating on the surface of an ideal incompressible unlimited fluid is considered. The position and shape of the contact area between the body and the fluid (and the separation zone) are not known and depend on the relation between the translational and angular velocities acquired by the disk upon impact. Because of this, the problem in question is nonlinear and belongs to the class of free-boundary problems. The problem is solved using the method of Hammerstein-type nonlinear boundary integral equations. This approach allows the fluid flow after impact and the unknown zone of separation of fluid particles to be determined simultaneously. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 76–86, July–August, 2009.  相似文献   

11.
Coefficients of heat transfer to the surface in a laminar hypersonic flow (M = 21) over plane and axisymmetric models with a compression corner are presented. These coefficients are measured by an infrared camera. The parameters varied in the experiments are the angle of the compression corner and the distance to the corner point. Characteristics of the flow with and without separation in the corner configuration are obtained. The measured results are compared with direct numerical simulations performed by solving the full unsteady Navier-Stokes equations. Experiments with controlled streamwise structures inserted into the flow are described. A substantial increase in the maximum values of the heat-transfer coefficient in the region of flow reattachment after developed laminar separation is demonstrated. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 112–120, July–August, 2009.  相似文献   

12.
Numerical simulation of the separation flow on the lateral surface of an aircraft due to interaction between the engine exhaust plume and the external air-stream is carried out on the basis of the full Navier-Stokes equations. Three separated flow regimes are revealed, namely, closed, open and periodic. The conditions under which each of these three regimes may exist are determined. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 132–138, January–February, 1994.  相似文献   

13.
In this work, we show that for linear upper triangular systems of differential equations, we can use the diagonal entries to obtain the Sacker and Sell, or Exponential Dichotomy, and also –under some restrictions– the Lyapunov spectral intervals. Since any bounded and continuous coefficient matrix function can be smoothly transformed to an upper triangular matrix function, our results imply that these spectral intervals may be found from scalar homogeneous problems. In line with our previous work [Dieci and Van Vleck (2003), SIAM J. Numer. Anal. 40, 516–542], we emphasize the role of integral separation. Relationships between different spectra are shown, and examples are used to illustrate the results and define types of coefficient matrix functions that lead to continuous Sacker–Sell spectrum and/or continuous Lyapunov spectrum.   相似文献   

14.
A mathematical model of an unsteady separated flow around an oscillating airfoil is considered. This model is based on a viscid-inviscid approach. The points of separation and the intensity of vorticity displaced into the external flow are determined using boundary-layer equations in an integral form. Dynamic stall on an oscillating airfoil is studied. The mechanism and nature of antidamping are discovered. Novosibirsk State Technical University, Novosibirsk 630092. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 3, pp. 81–85, May–June, 2000.  相似文献   

15.
This paper presents hybrid Reynolds-averaged Navier–Stokes (RANS) and large-eddy-simulation (LES) methods for the separated flows at high angles of attack around a 6:1 prolate spheroid. The RANS/LES hybrid methods studied in this work include the detached eddy simulation (DES) based on Spalart–Allmaras (S–A), Menter’s k–ω shear-stress-transport (SST) and k–ω with weakly nonlinear eddy viscosity formulation (Wilcox–Durbin+, WD+) models and the zonal-RANS/LES methods based on the SST and WD+ models. The switch from RANS near the wall to LES in the core flow region is smooth through the implementation of a flow-dependent blending function for the zonal hybrid method. All the hybrid methods are designed to have a RANS mode for the attached flows and have a LES behavior for the separated flows. The main objective of this paper is to apply the hybrid methods for the high Reynolds number separated flows around prolate spheroid at high-incidences. A fourth-order central scheme with fourth-order artificial viscosity is applied for spatial differencing. The fully implicit lower–upper symmetric-Gauss–Seidel with pseudo time sub-iteration is taken as the temporal differentiation. Comparisons with available measurements are carried out for pressure distribution, skin friction, and profiles of velocity, etc. Reasonable agreement with the experiments, accounting for the effect on grids and fundamental turbulence models, is obtained for the separation flows. The project supported by the National Natural Science Foundation of China (10502030 and 90505005).  相似文献   

16.
A problem is considered for the system describing gas flows with plate boundary layer separation in Mises variables in boundary-layer theory. The existence of generalized solutions of the problem is proved. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 4, pp. 36–41, July–August, 2008.  相似文献   

17.
The model of an ideal incompressible fluid is used to study the solvability of optimal control problems for the shape of a nozzle which discharges free-boundary fluid flow with and without accounting for gravity (internal aerodynamics) and shape optimization problems for an obstacle with jet separation (external aerodynamics). The qualitative properties of such flows are studied. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 30–39, May–June, 2007.  相似文献   

18.
Detached-eddy simulation (DES) is well understood in thin boundary layers, with the turbulence model in its Reynolds-averaged Navier–Stokes (RANS) mode and flattened grid cells, and in regions of massive separation, with the turbulence model in its large-eddy simulation (LES) mode and grid cells close to isotropic. However its initial formulation, denoted DES97 from here on, can exhibit an incorrect behavior in thick boundary layers and shallow separation regions. This behavior begins when the grid spacing parallel to the wall Δ becomes less than the boundary-layer thickness δ, either through grid refinement or boundary-layer thickening. The grid spacing is then fine enough for the DES length scale to follow the LES branch (and therefore lower the eddy viscosity below the RANS level), but resolved Reynolds stresses deriving from velocity fluctuations (“LES content”) have not replaced the modeled Reynolds stresses. LES content may be lacking because the resolution is not fine enough to fully support it, and/or because of delays in its generation by instabilities. The depleted stresses reduce the skin friction, which can lead to premature separation.For some research studies in small domains, Δ is made much smaller than δ, and LES content is generated intentionally. However for natural DES applications in useful domains, it is preferable to over-ride the DES limiter and maintain RANS behavior in boundary layers, independent of Δ relative to δ. For this purpose, a new version of the technique – referred to as DDES, for Delayed DES – is presented which is based on a simple modification to DES97, similar to one proposed by Menter and Kuntz for the shear–stress transport (SST) model, but applicable to other models. Tests in boundary layers, on a single and a multi-element airfoil, a cylinder, and a backward-facing step demonstrate that RANS function is indeed maintained in thick boundary layers, without preventing LES function after massive separation. The new formulation better fulfills the intent of DES. Two other issues are discussed: the use of DES as a wall model in LES of attached flows, in which the known log-layer mismatch is not resolved by DDES; and a correction that is helpful at low cell Reynolds numbers.  相似文献   

19.
The effect of roughness on separating flow over two-dimensional hills   总被引:1,自引:0,他引:1  
Two new experimental data sets for turbulent flow over a steep, rough hill are presented. These include detailed laser Doppler anemometry measurements obtained at the separation and reattachment points and, in particular, within the reverse flow region on the lee side of the hill. These results allow the development of a new parametrization for rough wall boundary layers and validate the use of Stratford’s solution for a separating rough flow. The experiments were conducted in a water channel for two different Reynolds numbers. In the first set of rough wall experiments, the flow conditions and the hill shape are similar to those presented in Loureiro et al. (Exp. Fluids, 42:441–457, 2007a) for a smooth surface, leading to a much reduced separation region. In the second set of experiments, the Reynolds number is raised ten times. The region of separated flow is then observed to increase, but still to a length shorter than that recorded by Loureiro et al. (Exp. Fluids, 42:441–457, 2007a). Detailed data on mean velocity and turbulent quantities are presented. To quantify the wall shear stress, global optimization algorithms are used. The merit function is defined in terms of a local solution that is shown to reduce to the classical law of the wall far away from a separation point and to the expression of Stratford at a separation point. The flow structure at the separation point is also discussed.  相似文献   

20.
We present a new finite element – finite volume (FEFV) method combined with a realistic equation of state for NaCl–H2O to model fluid convection driven by temperature and salinity gradients. This method can deal with the nonlinear variations in fluid properties, separation of a saline fluid into a high-density, high-salinity brine phase and low-density, low-salinity vapor phase well above the critical point of pure H2O, and geometrically complex geological structures. Similar to the well-known implicit pressure explicit saturation formulation, this approach decouples the governing equations. We formulate a fluid pressure equation that is solved using an implicit finite element method. We derive the fluid velocities from the updated pressure field and employ them in a higher-order, mass conserving finite volume formulation to solve hyperbolic parts of the conservation laws. The parabolic parts are solved by finite element methods. This FEFV method provides for geometric flexibility and numerical efficiency. The equation of state for NaCl–H2O is valid from 0 to 750°C, 0 to 4000 bar, and 0–100 wt.% NaCl. This allows the simulation of thermohaline convection in high-temperature and high-pressure environments, such as continental or oceanic hydrothermal systems where phase separation is common.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号