首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An optical fiber sensor for the continuous determination of hydrochloric acid is presented. It is based on the fluorescence quenching of a flavone containing copolymer membrane by hydrochloric acid. The quenching efficiency is greatly enhanced in the presence of Fe(III). This enhancement is attributed to the primary inner filter effect, as well as the formation of a complex between the 4′-N,N-dimethylaminoflavone group in the copolymer and the Fe(III) species extracted from hydrochloric acid solution. The optical response is linear and reversible for 0.10–6.00 mol L–1 HCl with a response time of the order of a second. The standard deviations for repeated alternative measurements of 0.20 and 2.00 mol L–1 hydrochloric acid are 0.32% and 0.46% (n = 10), respectively, indicating a good reproducibility. Because of the covalently bonding of the dye to polymer, the sensor exhibits also a good stability. Selectivity has also been evaluated for some potential interferents. The sensor in conjunction with a flow-injection system can be used for on-line determination of hydrochloric acid.  相似文献   

2.
A capillary electrophoretic method for the determination of EDTA has been developed. EDTA was converted to Ni(II)-EDTA prior to separation, separated from Fe(III)-EDTA, thiosulphate, bromide and polythionates using a fused silica capillary (57 cm × 75 μm I.D.) filled with a borate buffer (50 mmol L–1; pH 8.5; applied voltage, 30 kV) and detected at 214 nm. The separation time is about 6 min. The detection limit achieved is 2 × 10–6 mol L–1 for EDTA. This method was applied for the determination of free EDTA in used fixing solutions. Received: 27 February 1998 / Revised: 28 April 1998 / Accepted: 20 May 1998  相似文献   

3.
A capillary electrophoretic method for the determination of EDTA has been developed. EDTA was converted to Ni(II)-EDTA prior to separation, separated from Fe(III)-EDTA, thiosulphate, bromide and polythionates using a fused silica capillary (57 cm × 75 μm I.D.) filled with a borate buffer (50 mmol L–1; pH 8.5; applied voltage, 30 kV) and detected at 214 nm. The separation time is about 6 min. The detection limit achieved is 2 × 10–6 mol L–1 for EDTA. This method was applied for the determination of free EDTA in used fixing solutions. Received: 27 February 1998 / Revised: 28 April 1998 / Accepted: 20 May 1998  相似文献   

4.
A new optical fiber sensor was prepared for the determination of berberine in aqueous solution using a micrometer-sized flow-cell and a bifurcated optical fiber. The sensing is based on fluorescence quenching of 2-(4-diphenylyl)-6-phenylbenzoxazole (PBBO) in the PVC membrane. This process is accompanied by non-fluorescent ground-state complex formation. With this sensor, berberine can be determined in sample solutions from 2.42 × 10–5 mol L–1 to 6.04 × 10–7 mol L–1. Satisfactory reproducibility, reversibility, and short response times of less than 1 min are realized. The sensor also shows good selectivity over some common pharmaceutical species and alkali and alkali-earth metal salts, and can be used for the direct assay of berberine in commercial tablets. The results are in correspondence with those obtained by the pharmacopoeia method. Received: 4 April 1997 / Revised: 8 August 1997 / Accepted: 12 August 1997  相似文献   

5.
A new optical fiber sensor was prepared for the determination of berberine in aqueous solution using a micrometer-sized flow-cell and a bifurcated optical fiber. The sensing is based on fluorescence quenching of 2-(4-diphenylyl)-6-phenylbenzoxazole (PBBO) in the PVC membrane. This process is accompanied by non-fluorescent ground-state complex formation. With this sensor, berberine can be determined in sample solutions from 2.42 × 10–5 mol L–1 to 6.04 × 10–7 mol L–1. Satisfactory reproducibility, reversibility, and short response times of less than 1 min are realized. The sensor also shows good selectivity over some common pharmaceutical species and alkali and alkali-earth metal salts, and can be used for the direct assay of berberine in commercial tablets. The results are in correspondence with those obtained by the pharmacopoeia method. Received: 4 April 1997 / Revised: 8 August 1997 / Accepted: 12 August 1997  相似文献   

6.
A continuous flow atomic absorption spectrometric system was used to develop an efficient on-line preconcentration-elution procedure for the determination of iodide traces. Chromium (VI) is introduced into the flow system and is reduced to chromium (III) in acid medium proportionally to the iodide present in the sample. The Cr(III) reduced by iodide is retained on a minicolumn packed with a poly(aminophosphonic acid) chelating resin, while unreduced Cr(VI) is not retained. Reduced Cr(III) is preconcentrated by passing the sample containing iodide through the system during 3 min, and is then eluted with 0.5 mol L–1 hydrochloric acid and determined by flame atomic absorption spectrometry (FAAS). The detection limit (3σ) obtained is 2.5 μg L–1. Other ions typically present in waters do not interfere. The proposed method allows the determination of iodide in the range 6–220 μg L–1 with a relative standard deviation of 2.7% at a rate of 17 samples h–1. The method has been applied to the determination of iodide in tap and sea waters. Received: 16 September 1999 / Revised: 15 November 1999 / Accepted: 19 November 1999  相似文献   

7.
A square wave voltammetric method whith a static mercury drop electrode (SMDE) was developed for the quantitative determination of iron (III) in Zn-Fe alloy galvanic baths. Real alloy bath samples were analyzed by the standard addition method and recovery tests were carried out. 0.50 mol L–1 sodium citrate (pH 6.0) or 0.20 mol L–1 oxalic acid (pH 4.0) were applied as supporting electrolytes resulting in both cases in a peak potential of about –0.20 V vs. Ag|AgCl (saturated KCl). The iron (III) concentration in the alloy bath was 9.0 × 10–4 mol L–1. A good correlation (r = 0.9999) was achieved between the iron (III) concentration and the peak current in the electrolytes studied, with linear response ranges from 1.0 × 10–6 to 1.2 × 10–4 mol L–1. Interference levels for some metals such as copper (II), lead (II), chromium (III) and manganese (II) that can hinder the Zn-Fe alloy deposition were evaluated; only copper (II) interferes seriously. Received: 4 April 2000 / Revised: 19 June 2000 / Accepted: 22 June 2000  相似文献   

8.
A simple and fast flow injection fluorescence quenching method for the determination of iron in water has been developed. Fluorimetric determination is based on the measurement of the quenching effect of iron on salicylic acid fluorescence. An emission peak of salicylic acid in aqueous solution occurs at 409 nm with excitation at 299 nm. The carrier solution used was 2 × 10−6 mol L−1 salicylic acid in 0.1 mol L−1 NH4+/NH3 buffer solution at pH 8.5. Linear calibration was obtained for 5–100 μg L−1 iron(III) and the relative standard deviation was 1.25 % (n = 5) for a 20 μL injection volume iron(III). The limit of detection was 0.3 μg L−1 and the sampling rate was 60 h−1. The effect of interferences from various metals and anions commonly present in water was also studied. The method was successfully applied to the determination of low levels of iron in real samples (river, sea, and spring waters).  相似文献   

9.
A flow-through optosensor has been prepared for the sensitive and selective determination of pyridoxine (vitamin B6) in aqueous solutions. The sensor was developed in conjunction with a monochannel flow-injection analysis system with fluorimetric detection using Sephadex SP-C25 resin as an active sorbent substrate. This method of determination is carried out without any derivatization. The wavelengths of excitation and emission were 295 and 385 nm, respectively. When a HCl (10–3 mol L–1) / NaCl (3 × 10–2 mol L–1) solution is used as carrier solution, the sensor responds linearly in the measuring range of 5–200, 10–400 and 50–1800 ng mL–1 with detection limits of 0.33, 0.67, and 5.70 ng mL–1 for 2000, 1000 and 200 μL of sample volume, respectively. The relative standard deviation for ten independent determinations is less than 0.75% for 0.2 and 1.0 mL of sample volumes used, and 1.31% for 2.0 mL of sample volume used. The method was satisfactorily applied to the determination of vitamin B6 in pharmaceutical preparations. Received: 4 June 1998 / Revised: 16 July 1998 / Accepted: 6 August 1998  相似文献   

10.
A reliable and highly sensitive method for the determination of hesperidin is described. It involves the formation of a highly fluorescent complex between hesperidin and aluminium (III) in a micellar medium. There is a linear relationship between fluorescence intensity (λem = 496 nm, λex = 391 nm) and hesperidin concentration over the range 5 × 10–7– 2 × 10–5 mol L–1. The detection limit is 79 μg L–1. The method can easily be adapted to a flow system using a three-channel manifold, the peak height being proportional to the hesperidin concentration over the range 1 × 10–6– 1 × 10–4 mol L–1. Manual and flow-injection procedures have been successfully applied to the determination of hesperidin in orange peel and orange juice. Received: 21 October 1998 / Revised: 16 December 1998 / Accepted: 25 December 1998  相似文献   

11.
An irreversible reduction peak of oxymyoglobin (MbO2) was observed on the bare glassy carbon electrode (GCE) in acetate buffer solution under atmospheric conditions. It is the reduction of bonded oxygen in Mb, but not the heme Fe(III)/Fe(II) redox couple that underwent electrochemical reaction on the electrode. The peak current achieved a maximum value in acetate buffer solution of pH 4.0. The peak potential was pH dependent, suggesting that the proton was involved in the electrochemical reaction. Furthermore, the peak current was linearly related to the concentration of myoglobin in the range of 2.5 × 10–8∼ 1.0 × 10–6 mol · L–1 with a detection limit of 5 × 10–9 mol · L–1. Received: 20 March 1998 / Revised: 24 June 1998 / Accepted: 1 July 1998  相似文献   

12.
A method is described for the flow injection determination of total iron as Fe(III) using a solid-phase reactor containing disodium-1,2-dihydroxybenzene-3,5-disulphonate (tiron) as substrate. The iron(III) reacted with tiron to form a complex which absorbs strongly at 667 nm, where it was measured spectrophotometrically. The system has a linear range of 1 to 50 mg L–1 with a detection limit of 0.67 mg L–1. It is suitable for the determination of total iron in multivitamin tablets and iron-rich ground waters, with a relative standard deviation of better than 1.1%. The results obtained compared favourably with the certified values and a standard ICP-AES method. Received: 12 November 1997 / Revised: 9 March 1998 / Accepted: 15 March 1998  相似文献   

13.
A PVC membrane electrode based on a cadmium–salen (N,N′-bis-salicylidene-1,2ethylenediamine) complex as an anion carrier is described. The electrode has an anti-Hofmeister selectivity sequence with a preference for thiocyanate at pH 1.5–11.0. It has a linear response to thiocyanate from 1.0 × 10–6 to 1.0 × 10–1 mol L–1 with a slope of 59.1 ± 0.2 mV per decade, and a detection limit of 7 × 10–7 mol L–1. This electrode has high selectivity for thiocyanate relative to many common organic and inorganic anions. The proposed sensor has a fast response time of approximately 15 s. It was applied to the determination of thiocyanate in a milk sample. Received: 1 December 2000 / Revised: 19 April 2001 / Accepted: 30 April 2001  相似文献   

14.
A new flow injection chemiluminescence method for the assay of medazepam is explored. The method involves the use of permanganate in sulfuric acid for the oxidation of medazepam with the emission of chemiluminescence detected by a photomultiplier tube. A simplex procedure was employed for optimising the conditions for high sensitivity detection, which were found to be 1.03 × 10–3 mol L–1 permanganate, 0.153 mol L–1 sulfuric acid and 3.43 mL min–1 flow rate. The linear calibration range was 3.7 × 10–5 to 1.7 × 10–3 mol L–1. The detection limit (3σ) and the sample throughput were 1.85 × 10–5 mol L–1 and 100 per hour, respectively. The relative standard deviation for 5 replicate determinations of 1.9 × 10–4 mol L–1 medazepam was 0.15%. Common excipients (starch, glucose, maltose, lactose) used in pharmaceutical preparations had no effect. Received: 2 February 1998 / Revised: 20 May 1998 / Accepted: 25 May 1998  相似文献   

15.
A new process control methodology for the simultaneous determination of sugars, alcohols and organic acids in wine based on multivariate evaluation of mid-IR transmission spectra of wine samples is presented. In addition to ethanol several lower level wine components (glucose, fructose, glycerol, citric-, tartaric-, malic-, lactic- and acetic acid) were determined. To establish a multivariate calibration model a set of 72 calibration solutions was prepared and measured, using a novel, fully automated sequential injection (SI) system with Fourier transform infrared (FTIR) detection. The resulting spectra were evaluated using a partial least square (PLS) model. The developed PLS model was then applied to the analysis of real wine samples containing 79–91 g L–1 ethanol, 5.9–8.1 g L–1 glycerol, 0.4–6.9 g L–1 glucose, 1.5–7.5 g L–1 fructose, 0.3–1.6 g L–1 citric acid, 1.0–1.7 g L–1 tartaric acid, 0.02–3.2 g L–1 malic acid, 0.4–2.8 g L–1 lactic acid and 0.15–0.60 g L–1 acetic acid, yielding results which were in good agreement with those obtained by an external reference method (HPLC-IR). The short analysis time (less than 3 min) together with high reproducibility makes the newly developed method applicable to process control and screening purposes (average of the standard deviations calculated from four repetitive measurements of six different real samples: ethanol: 0.55 g L–1, glycerol: 0.037 g L–1, glucose: 0.056 g L–1, fructose: 0.036 g L–1, citric acid: 0.020 g L–1, tartaric acid: 0.010 g L–1, malic acid: 0.052 g L–1, lactic acid: 0.012 g L–1 and acetic acid: 0.026 g L–1). Received: 21 January 1998 / Revised: 5 March 1998 / Accepted: 6 March 1998  相似文献   

16.
A new and efficient Hg(II) back-elution method for the desorption of Cd, Cu, and Pb from Chelex-100 chelating resin was developed. A smaller eluent volume and shorter elution time can be achieved using an Hg(II) containing eluent rather than pure nitric acid. Owing to the remaining Hg(II) ion in the effluent, a mercury thin-film electrode is formed in-situ during the anodic stripping voltammetric determination without any further addition of Hg(II). The results indicate that all the analytes in seawater matrix can be completely adsorbed on Chelex-100 resin from the sample at pH 6.5, and subsequently eluted from the resin with an acid solution of 5 × 10–4 mol/L Hg2+ + 1 mol/L HClO4. The detection limits obtained from the differential-pulse anodic (μg L–1 to ng L–1) stripping voltammetry are at sub-ppb to ppt (μg L–1 to ng L–1) levels permitting to determine Cd, Cu and Pb traces in seawater. The analytical reliability was confirmed by the analysis of the certified reference material CASS-II (open ocean seawater). Received: 22 April 1997 / Revised: 5 August 1997 / Accepted: 7 August 1997  相似文献   

17.
The preparation of an ion-selective electrode by chemical treatment of copper wire and its application for the measurements of copper (II) and iodide ions is described. The proposed reaction mechanism at the sensing surface, which explains the response of the electrode to Cu2+ and iodide ions, is discussed. The prepared electrode was suitable for direct potentiometric measurements of iodide and copper (II) in batch experiments down to concentrations of 1 × 10–5 mol L–1. A tubular electrode, prepared in the same way, may be used as a potentiometric sensor in a flow-injection analysis for Cu (II) and/or iodide determinations. Received: 4 December 1998 / Revised: 31 March 1999 / Accepted: 6 April 1999  相似文献   

18.
A minicolumn packed with poly(aminophosphonic acid) chelating resin incorporated in an on-line preconcentration system for flame atomic-absorption spectrometry was used to determine ultratrace amounts of lead in mussel samples at μg L–1 level. The preconcentrated lead was eluted with hydrochloric acid and injected directly into the nebulizer for atomization in an air-acetylene flame for measurement. The performance characteristics of the determination of lead were: preconcentration factor 26.8 for 1 min preconcentration time, detection limit (3σ) in the sample digest was 0.25 μg g–1 (dry weight) for a sample volume of 3.5 mL and 0.2 g sample (preconcentration time 1 min), precision (RSD) 2.3% for 25 μg L–1 and 2.0% for 50 μg L–1. The sampling frequency was 45 h–1. The method was highly tolerant of interferences, and the results obtained for the determination of lead in a reference material testify to the applicability of the proposed procedure to the determination of lead at ultratrace level in biological materials such as mussel samples. Received: 1 November 2000 / Revised: 8 January 2001/ Accepted: 11 January 2001  相似文献   

19.
A novel flow-injection analysis (FIA) system has been developed for the rapid determination of the volatile acidity of some fermentation products like vinegars and juices. The proposed method is based on the diffusion of volatile acids, mainly acetic acid, across a PTFE gas-permeable membrane from an acid stream into an alkaline stream, and the acids trapped in the acceptor solution are determined online by a bulk acoustic wave impedance sensor based on changes in the conductivity of the solution. It exhibited a linear frequency response up to 10 mmol · L–1 acetic acid with a detection limit of 50 μmol · L–1, and the precision was better than 1% (RSD) at a through-put of 72 h–1. The effects of operating voltage for the detector, cell constant of the electrode, composition of acceptor stream, flow rates and temperature on the FIA performance were also investigated. Received: 2 June 1997 / Revised: 7 July 1997 / Accepted: 12 July 1997  相似文献   

20.
The adsorption behavior and differential pulse cathodic adsorptive stripping voltammetry of the pesticide Chlorpyrifos (CP) were investigated at the hanging mercury drop electrode (HMDE). The pesticide was accumulated at the HMDE and a well-defined stripping peak was obtained at –1.2 V vs Ag/AgCl electrode at pH 7.50. A voltammetric procedure was developed for the trace determination of Chlorpyrifos using differential pulse cathodic adsorptive stripping voltammetry (DP-CASV). The optimum working conditions for the determination of the compound were established. The peak current was linear over the concentration range 9.90 × 10–8– 5.96 × 10–7 mol/L of Chlorpyrifos. The influence of diverse ions and some other pesticides was investigated. The analysis of Chlorpyrifos in commercial formulations and treated waste water was carried out satisfactorily Received: 10 July 1997 / Revised: 1 April 1998 / Accepted: 6 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号