首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kinetics of photopolymerization of MMA at 40°C with the use of iodine as the photoinitiator was studied. At low range of iodine concentration (< 0.0004M), the rate of polymerization was proportional to square root of iodine concentration and the monomer exponent was 2.5, while at a higher range of iodine concentration, (0.0005–0.002M) the initiator exponent and monomer exponent were zero and 3.6–3.8 (i.e., close to 4), respectively. The chain-transfer constant of iodine at 40°C was found to be 6.0. Polymerization was found to be largely inhibited in the presence of relatively high concentrations of iodine (> 0.005M) and also in presence of hydroquinone. Kinetic and other data indicate a radical mechanism of polymerization involving complexation of monomer molecules with iodine prior to radical generation, and termination is believed to take place bimolecularly at low iodine concentrations and unimolecularly, involving reaction with iodine, at high iodine concentrations (initiator termination).  相似文献   

2.
Benzil (BZL)-dimethylaniline (DMA) exciplex interaction has been utilized to initiate the photopolymerization of methyl methacrylate at 40°C in bulk and in solution. Depending on the nature of the solvent used, the monomer exponent values varied between 0.47 to 2.76. Initiator exponent values were found to be 0.29 and 0.15 with respect to [BZL] and [DMA], respectively. A low value of kp 2/kt and the high initiator transfer constant values indicated significant initiator-dependent termination. The semipinacol radical formed during irradiation is thought to be mainly responsible for primary radical termination while the generated ion radicals are presumed to participate in degradative initiator transfer.  相似文献   

3.
Iodine monochloride, IC1, can easily induce photopolymerization of MMA at 40° C under visible light. Initiator order and monomer order are 0.5 and 2, respectively, at low [IC1], while the corresponding values at high [IC1] are 0 and 3. Kinetic and other data indicate a radical polymerization mechanism that involves complexation of monomer molecules with IC1, which is second order in [M], prior to radical generation. Termination of polymerization proceeds bimolecularly at low [IC1], and unimolecularly, involving reaction with the initiator at high [IC1] (initiator termination).  相似文献   

4.
The photopolymerization of methyl methacrylate (MMA) in visible light was studied at 40°C using the acridone-bromine (acridone-Br2) combination as the photoinitiator. The polymerization was found to proceed via a free radical mechanism, and the radical generation process was considered to follow an initial complexation reaction between monomer and each initiator component (acridone and Br2), followed by further interaction between these two initiator-monomer complexes. Kinetic data indicated a lower-order dependence of R on initiator concentrations (initiator exponent < 0.5). Initiator-dependent chain termination was signifi-cant along with the usual bimolecular mode of chain termination. The monomer exponent varied from about 1.00 to 2.00, depending on the nature of solvents used. The nonidealities in this system were also analyzed.  相似文献   

5.
Photopolymerization of MMA in visible light was studied at 40°C using acridone as the photoinitiator. The polymerization was found to proceed via a free radical mechanism and the radical generation process was considered to follow an initial complexation reaction between monomer and acridone. Kinetic data indicated a lower order dependence of Rp on the initiator concentration (initiator exponent < 0.5). Initiator-dependent chain termination was significant along with the usual bimolecular mode of chain termination. The monomer exponent varied from about 1.0 to 1.5, depending on the nature of the solvent used. The nonidealities in this case were also analyzed.  相似文献   

6.
Photopolymerization of MMA was carried out at 40°C in diluted systems by use of quinolinebromine (Q–Br2) charge-transfer complex as the initiator and chloroform, carbon tetrachloride, chlorobenzene, dioxane, THF, acetone, benzene, toluene, quinoline, and pyridine as solvents. The results showed variable monomer exponents ranging from 1 to 3. For chloroform, carbon tetrachloride, and chlorobenzene, the monomer exponent observed was unity; for other solvents used, the value of the same exponent was much higher (between 2 and 3). Initiation of polymerization is considered to take place through radicals generated in the polymerization systems by the photodecomposition of (Q–Br2)–monomer complex (C) formed instantaneously in situ on addition of the Q–Br2 complex in monomer. The kinetic feature of high monomer exponent is considered to be due to higher order of stabilization of the initiating complex (C) in presence of the respective solvents. In the presence of the retarding solvents, very low or zero initiator exponents were also observed, depending on the nature and concentration of the solvents used. The deviation from the square-root dependence of rate on initiator concentration becomes higher at high solvent and initiator concentrations in general. This novel deviation is explained on the basis of initiator termination, probably via degradative chain transfer involving the solvent-modified initiating complexes and the propagating radicals.  相似文献   

7.
The kinetics of photopolymerization reactions of acrylamide initiated by copper (II)–bis(amino acid) chelates with amino acids glutamic acid, serine, or valine were studied at 30°C. The extent of monomer conversion increases with increased initiator concentration and falls off after reaching a maximum. Analysis of the results shows that for lower concentrations of the initiator, the rate of monomer disappearance is proportional to light absorption fraction f[monomer] and the square root of the intensity. At higher concentrations of the initiator, the rate of monomer disappearance is proportional to Fε/[initiator]1/2; the monomer exponent is 1.5 and the intensity exponent 0.5. Mutual termination of the radicals is proposed at lower concentrations of the initiator; at higher concentrations of the initiator termination of the initiator radical by the copper (II) complex along with mutual termination occurs. The initiator radical species is identified from flash photolysis studies of these complexes as the Cu(I)-coordinated radical. The effect of pH on the monomer conversion is explained. The data indicate a free-radical mechanism of polymerization and a reaction scheme is proposed for the polymerization reactions.  相似文献   

8.
The photopolymerization of MMA in visible light was studied at 45°C using IC13 as the photoinitiator. The initiator exponent was found to be 0.16 and the monomer exponent varied between 1.0 to 1.50, depending on the nature of the solvent. Analysis of the data revealed that the polymerization was induced by a free radical mechanism. Nonideality of the kinetics was explained on the basis of 1) Monomer-dependent chain initiation and 2) Initiator-dependent chain termination via degradative initiator transfer.  相似文献   

9.
Isatoic anhydride (IA) alone did not initiate photopolymerization of methyl metacrylate (MMA) at 40°C when exposed to visible light for about 180 min. But IA, when used in combination with bromine (Br2) as the initiator, initiated the photopolymerization of MMA readily under the same conditions. This behavior was explained by the formation of a donor-acceptor type of complex between IA and Br2 in the presence of MMA. The polymerization was found to proceed via a free radical mechanism and the radical generation process was considered to follow an initial complexation reaction between the initiator components and monomer. The complex initiator showed nonideal kinetics for the present system (initiator exponent < 0.5) and was analyzed. The monomer exponents varied from 0.83 to 1.15 normally depending on the nature of solvent used. Initiator-dependent chain termination was significant as well as the bimolecular mode of chain termination. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Polymerization of methyl methacrylate (MMA) was kinetically studied under photo condition using near UV visible light at 40°C and employing morpholine (MOR)–chlorine (Cl2) charge transfer (C-T) complex as the photoinitiator. The rate of polymerization (Rp) was dependent on morpholine/chlorine mole ratio; the 1 : 2 (MOR–Cl2) C-T complex acted as the latent initiator complex, C, which underwent further complexation with the monomer molecules to give the actual initiator complex, I. Using 1 : 2 (MOR-Cl2) C-T complex as the latent initiator, the initiator exponent evaluated for bulk photopolymerization of MMA was 0.071 and monomer exponent determined from studies of photopolymerization in benzene diluted system was 1.10. Benzoquinone behaved as a strong inhibitor and the polymers tested positive for the incorporation of chlorine atom end groups. Polymerization followed a radical mechanism. Kinetic nonideality as revealed by low (≪0.5) initiator exponent and a monomer exponent of greater than unity were explained in terms of primary radical termination effect. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1681–1687, 1997  相似文献   

11.
Photopolymerization of methyl methacrylate (MMA) in visible light was studied at 40°C using Rhodamine 6G—Benzoyl peroxide combination as photoinitiator. The photopolymerization proceeds by a free radical mechanism and the radical generation process occurs by an initial complexation reaction between the initiator components. Kinetic data indicated a lower-order dependence of Rp on initiator concentrations (initiator exponent < 0.5). Initiator-dependent chain termination was significant along with the bimolecular mode of chain termination.  相似文献   

12.
Vinyl acetate was polymerized at high initiation rate with 2,2′-azobis(2,4-dimethyl valeronitrile) as initiator at 50°C. In this polymerization, the power dependence of polymerization rate on the initiation rate is smaller than at lower concentration of monomer. This dependence was kinetically analyzed at each given concentration of monomer. Average degree of polymerization of polymer formed depends on the concentration of initiator. This dependence was explained by considering chain and primary radical terminations and transfer to monomer of polymer radical, and the initiator efficiency (=0.503) was deduced. It was found that the chain termination is inversely proportional to solvent viscosity, but the primary radical termination is not inversely proportional to solvent viscosity. Further, the value of the primary radical termination rate constant (=1.4 × 109l./mole-sec) was estimated.  相似文献   

13.
Photopolymerization of the vinyl monomer (M) of methyl methacrylate (MMA) was kinetically studied by using near-UV/visible light at 40°C and employing a morpholine (MOR)–sulfur dioxide (SO2) charge-transfer (C-T) complex as the photoinitiator. The rate of polymerization (RP) was found to be dependent on the morpholine: sulfur dioxide mole ratio; the 1 : 2 (MOR–SO2) complex acted as the latent initiator complex C which underwent further complexation with the monomer molecules to give the actual initiating complex I. Using the 1 : 2 (MOR–SO2) C-T complex as the latent initiator, the observed kinetics may be expressed as RP [MOR–SO2]0.27[M]1.10. Benzoquinone behaved as a strong inhibitor. Polymers obtained tested positive for the incorporation of a sulphonate-type end group. Polymerization followed a radical mechanism. Kinetic nonideality as revealed by a low initiator exponent and monomer exponent of greater than unity was explained on the basis of a prominent primary radical termination effect. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1973–1979, 1998  相似文献   

14.
Benzophenone (BP)-sensitized photopolymerization of methyl methacrylate (MMA) in near UV/visible light was studied at 40°C using dimethylaniline maleic acid (DMA—MA) combination as the photoinitiator. An instantaneous 1:1 complexation between DMA and MA takes place when they are mixed together in acetonitrile. Also, instantaneous complex formation occurs between DMA and MMA and between MA and MMA when they are dissolved in MMA in low concentrations, separately. Interestingly, when equimolar proportions of DMA and MA are mixed together in MMA, there is indication for further instantaneous complexation between (DMA—MMA) complex and (MA—MMA) complex forming the actual initiating species in the photopolymerization system. Initiator exponent was 0.28 and monomer exponent varied between 0.0 to 1.8 depending on the nature of the solvent and range of dilution used. Analysis of kinetic data indicates a free radical mechanism for the polymerization with initiator-dependent termination. Chain termination via degradative initiator transfer is quite significant; but the degradative effect becomes much less prominent in the higher range of initiator concentration indicating that the reinitiation reaction following the initiator transfer process assumes more proportionate significance as the initiator concentration is increased, probably as a result of higher reinitiation efficiency. Polymers obtained gave evidence for the incorporation of aromatic (amine) end groups in them.  相似文献   

15.
Polystyrene stars were synthesized with reversible addition–fragmentation chain‐transfer (RAFT) polymerization. The core of the stars comprised a trithiocarbonate heptafunctional β‐cyclodextrin ring. Polymerizations were performed at 100 and 120 °C in the absence of an extraneous initiator and at 60 °C in the presence of a radical initiator. Monofunctional trithiocarbonate was also synthesized and used to make linear polystyrene to allow direct a comparison with the star synthesis. In all cases, the polymerization kinetics conformed to pseudo‐first‐order behavior. The measured molecular weights of the stars were found to deviate from those predicted on the basis of the monomer/trithiocarbonate group ratio. The extent of this deviation was dependent on the polymerization temperature, RAFT agent concentration, and conversion. Despite the low radical concentrations, termination reactions are suggested to play a significant role in the seven‐arm polystyrene star syntheses. The synthetic method was found to be suitable for generating star block structures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4498–4512, 2002  相似文献   

16.
The polymerization kinetics of n-lauryl acrylate have been investigated in ethyl acetate and n-heptane at 40°C. A high monomer order, 1.6(5), was found in both solvents. Corresponding initiator orders, determined using Azdn and lauroyl peroxide, were slightly less than the usual value of 0.5. Although the chain termination reaction is undoubtedly diffusion controlled from the start of polymerization, diffusion effects dependent on monomer concentration only partly account for the high monomer order. Other possible explanations based on primary radical termination, “cage-effects,” degradative chain transfer, and radical complexing are also not applicable. Contrary to observations with lower acrylate esters, autoacceleration effects do not occur in the high conversion polymerization of n-lauryl acrylate. Ths probably reflects the reduced importance of radical branching reactions with this monomer.  相似文献   

17.
Photopolymerization of MMA with the use of H2O2 as the photoinitiator under visible light at 30°C was studied. Kinetic features in bulk monomer and in the presence of different diluents differ significantly. Usual free radical kinetics with square-root dependence of rate on initiator, indicating bimolecular termination of chain radicals, were observed for bulk polymerization. On dilution with various solvents polymerization was found to be retarded to different (usual and more than usual) extents, the observed monomer exponent value being much higher than unity in many cases. This deviation from normal kinetics has been interpreted in terms of the predominance of degradative initiator transfer in the diluted systems.  相似文献   

18.
Vinyl acetate was polymerized in bulk and in benzene at 50°C using a wide range of concentrations of azobisisobutyronitrile. Values of fk (the efficiency of initiator) and kprt/kikp (the characteristic constant of primary radical termination) were found to be 0.53 and 2.00 × 104 respectively from data for bulk polymerization. In solution polymerization, the initiator exponent is a function of initiator concentration ranging from 0.35 at high concentration to- about 0.65 at low concentration. This result has been explained on the basis of degradative chain transfer to solvent and primary radical termination. The results have been treated according to mathematical formulations already developed; the characteristic constant of degradative chain transfer and the transfer constant of the solvent have been determined. The results have been compared with literature values and discrepancies explained.  相似文献   

19.
Photopolymerization of MMA at 35° was studied using benzophenone (BP)-dimethylaniline (DMA) combination as photo-redox initiator. Initiator exponent was 0.13; monomer exponent was < 1.0 in chlorinated solvents and > 1.0 in other solvents. Photoreduction of BP by DMA is considered to produce chain-initiating radicals and analysis of kinetic data indicates this process to be solvent and monomer dependent. Chlorinated solvents are indicated to be much more reactive than other solvents. The photopolymerization is also characterized by significant primary radical termination.  相似文献   

20.
Low concentrations (0.001–0.03M) of chlorine easily induce photopolymerization of MMA at 40°C. Kinetic data indicate that polymerization follows a radical mechanism involving complexation of monomer by the initiator and initiation takes place through radical generation during photodecomposition of the initiator-monomer complex. Termination appears to take place bimolecularly. The kp2/kt value for MMA polymerization at 40°C was found to be 0.83 × 10?2. Rates of chlorine-initiated photopolymerization were found to decrease in the order MMA, EMA ? VA, Sty > MA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号