首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonlinear filtering problem of estimating the state of a linear stochastic system from noisy observations is solved for a broad class of probability distributions of the initial state. It is shown that the conditional density of the present state, given the past observations, is a mixture of Gaussian distributions, and is parametrically determined by two sets of sufficient statistics which satisfy stochastic DEs; this result leads to a generalization of the Kalman–Bucy filter to a structure with a conditional mean vector, and additional sufficient statistics that obey nonlinear equations, and determine a generalized (random) Kalman gain. The theory is used to solve explicitly a control problem with quadratic running and terminal costs, and bounded controls.  相似文献   

2.
《随机分析与应用》2013,31(4):1085-1110
Abstract

The mean-square filtering problem for the discrete Volterra equations is a nontrivial task due to an enormous amount of operations required for the implementation of optimal filter. A difference equation of a moderate dimension is chosen as an approximate model for the original system. Then the reduced Kalman filter can be used as an approximate but efficient estimator. Using the duality theory of convex variational problems, a level of nonoptimality for the chosen filter is obtained. This level can be efficiently computed without exactly solving the full filtering problem.  相似文献   

3.

This paper presents reduced-order nonlinear filtering schemes based on a theoretical framework that combines stochastic dimensional reduction and nonlinear filtering. Here, dimensional reduction is achieved for estimating the slow-scale process in a multiscale environment by constructing a filter using stochastic averaging results. The nonlinear filter is approximated numerically using the ensemble Kalman filter and particle filter. The particle filter is further adapted to the complexities of inherently chaotic signals. In particle filters, an ensemble of particles is used to represent the distribution of the state of the hidden signal. The ensemble is updated using observation data to obtain the best representation of the conditional density of the true state variables given observations. Particle methods suffer from the “curse of dimensionality,” an issue of particle degeneracy within a sample, which increases exponentially with system dimension. Hence, particle filtering in high dimensions can benefit from some form of dimensional reduction. A control is superimposed on particle dynamics to drive particles to locations most representative of observations, in other words, to construct a better prior density. The control is determined by solving a classical stochastic optimization problem and implemented in the particle filter using importance sampling techniques.

  相似文献   

4.
This paper is concerned with the delay-dependent exponential robust filtering problem for switched Hopfield neural networks with time-delay. A new delay-dependent switched exponential robust filter is proposed that results in an exponentially stable filtering error system with a guaranteed robust performance. The design of the switched exponential robust filter for these types of neural networks can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated using standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed filter.  相似文献   

5.
A minimax terminal state estimation problem is posed for a linear plant and a generalized quadratic loss function. Sufficient conditions are developed to insure that a Kalman filter will provide a minimax estimate for the terminal state of the plant. It is further shown that this Kalman filter will not generally be a minimax estimate for the terminal state if the observation interval is arbitrarily long. Consequently, a subminimax estimate is defined, subject to a particular existence condition. This subminimax estimate is related to the Kalman filter, and it may provide a useful estimate for the terminal state when the performance of the Kalman filter is no longer satisfactory.  相似文献   

6.
In this paper, we will present a motion pattern recognition based Kalman filter (PRKF), and apply it to the time difference of arrival (TDOA) algorithm of indoor localization. The state matrix in Kalman filter (KF) is determined by the motion pattern which the target node is supposed to act, and this will bring new system error if the assumption is not correct. Considering this, we first create three fuzzy sets using three KFs whose state matrix stand for different motion patterns, then linearly combined the memberships of a target node of the fuzzy sets. Finally, simulation results show that the PRKF can enhance the localization accuracy about more than 20%.  相似文献   

7.
研究了在不确定观测下离散状态时滞系统的最优滤波问题,观测值的不确定性则通过一个满足Bernoulli分布且统计特性已知的随机变量来描述. 一般采用状态增广方法将时滞系统转换为无时滞随机系统, 再利用Kalman滤波器的设计方法解决最优状态估计问题, 但是当系统时滞较大时,转换后的系统状态维数很高, 这样增加了计算负担. 为此,基于最小方差估计准则, 利用射影性质和递归射影公式得到了一个新的滤波器设计方法, 而且保证了滤波器的维数与原系统相同.最后, 给出一个仿真例子说明所提方法的有效性.  相似文献   

8.
当前针对飞行预测的研究主要采用的是kalman算法,在解决非线性问题时存在着只能近似线性的而不够精确的问题.采用近年来受到广泛关注的粒子滤波算法,针对RNAV航路进行分析,结论中得到了对飞行误差仿真分析并对比了卡尔曼滤波仿真效果,证实了粒子滤波在航迹预测中更好的准确性.  相似文献   

9.
《Applied Mathematical Modelling》2014,38(9-10):2422-2434
An exact, closed-form minimum variance filter is designed for a class of discrete time uncertain systems which allows for both multiplicative and additive noise sources. The multiplicative noise model includes a popular class of models (Cox-Ingersoll-Ross type models) in econometrics. The parameters of the system under consideration which describe the state transition are assumed to be subject to stochastic uncertainties. The problem addressed is the design of a filter that minimizes the trace of the estimation error variance. Sensitivity of the new filter to the size of parameter uncertainty, in terms of the variance of parameter perturbations, is also considered. We refer to the new filter as the ‘perturbed Kalman filter’ (PKF) since it reduces to the traditional (or unperturbed) Kalman filter as the size of stochastic perturbation approaches zero. We also consider a related approximate filtering heuristic for univariate time series and we refer to filter based on this heuristic as approximate perturbed Kalman filter (APKF). We test the performance of our new filters on three simulated numerical examples and compare the results with unperturbed Kalman filter that ignores the uncertainty in the transition equation. Through numerical examples, PKF and APKF are shown to outperform the traditional (or unperturbed) Kalman filter in terms of the size of the estimation error when stochastic uncertainties are present, even when the size of stochastic uncertainty is inaccurately identified.  相似文献   

10.
Data assimilation refers to the methodology of combining dynamical models and observed data with the objective of improving state estimation. Most data assimilation algorithms are viewed as approximations of the Bayesian posterior (filtering distribution) on the signal given the observations. Some of these approximations are controlled, such as particle filters which may be refined to produce the true filtering distribution in the large particle number limit, and some are uncontrolled, such as ensemble Kalman filter methods which do not recover the true filtering distribution in the large ensemble limit. Other data assimilation algorithms, such as cycled 3DVAR methods, may be thought of as controlled estimators of the state, in the small observational noise scenario, but are also uncontrolled in general in relation to the true filtering distribution. For particle filters and ensemble Kalman filters it is of practical importance to understand how and why data assimilation methods can be effective when used with a fixed small number of particles, since for many large-scale applications it is not practical to deploy algorithms close to the large particle limit asymptotic. In this paper, the authors address this question for particle filters and, in particular, study their accuracy (in the small noise limit) and ergodicity (for noisy signal and observation) without appealing to the large particle number limit. The authors first overview the accuracy and minorization properties for the true filtering distribution, working in the setting of conditional Gaussianity for the dynamics-observation model. They then show that these properties are inherited by optimal particle filters for any fixed number of particles, and use the minorization to establish ergodicity of the filters. For completeness we also prove large particle number consistency results for the optimal particle filters, by writing the update equations for the underlying distributions as recursions. In addition to looking at the optimal particle filter with standard resampling, they derive all the above results for (what they term) the Gaussianized optimal particle filter and show that the theoretical properties are favorable for this method, when compared to the standard optimal particle filter.  相似文献   

11.
针对传统的荷载识别方法受不适定性问题影响导致识别误差较大,且受传感器数上的限制也无法监测所有结构易损伤位置处振动响应的问题,提出了一种基于增秩Kalman滤波(augmented Kalman filter, AKF)算法的动态荷载识别和结构响应重构方法.基于结构状态空间方程,形成由荷载向量和状态向量组成的增秩状态向量(augmented-rank state vector,ASV),利用Kalman滤波算法获得增秩状态向量的最小方差无偏(minimum variance unbiased, MVU)估计,实现了状态和荷载向量的同时识别.结合最优状态估计和观测矩阵,实现了未布置传感器处的结构动力响应重构.通过三个有限元案例,初步验证了该方法的可行性和有效性.结果表明,当荷载位置固定或移动时,所提方法均能有效地识别荷载和重构响应,精度较高且对测量噪声不敏感.传感器的种类、数量和布置位置对荷载识别和响应重构精度会有一定影响.  相似文献   

12.
In this work, radial basis function neural network (RBF-NN) is applied to emulate an extended Kalman filter (EKF) in a data assimilation scenario. The dynamical model studied here is based on the one-dimensional shallow water equation DYNAMO-1D. This code is simple when compared with an operational primitive equation models for numerical weather prediction. Although simple, the DYNAMO-1D is rich for representing some atmospheric motions, such as Rossby and gravity waves. It has been shown in the literature that the ability of the EKF to track nonlinear models depends on the frequency and accuracy of the observations and model errors. In some cases, just fourth-order moment EKF works well, but will be unwieldy when applied to high-dimensional state space. Artificial Neural Network (ANN) is an alternative solution for this computational complexity problem, once the ANN is trained offline with a high order Kalman filter, even though this Kalman filter has high computational cost (which is not a problem during ANN training phase). The results achieved in this work encourage us to apply this technique on operational model. However, it is not yet possible to assure convergence in high dimensional problems.  相似文献   

13.
The purpose of this article is to compute an explicit formula for the unnormalized conditional density for the filter associated with a nonlinear filtering problem with correlated noises and a signal process with nonlinear terms in the drift. This article extends the result of Daum to nonlinear filtering systems with correlated noises and incorporates both the Kalman–Bucy and Bene? filters as particular cases.  相似文献   

14.
In this paper, the filtering problem is investigated for a class of nonlinear discrete-time stochastic systems with state delays. We aim at designing a full-order filter such that the dynamics of the estimation error is guaranteed to be stochastically, exponentially, ultimately bounded in the mean square, for all admissible nonlinearities and time delays. First, an algebraic matrix inequality approach is developed to deal with the filter analysis problem, and sufficient conditions are derived for the existence of the desired filters. Then, based on the generalized inverse theory, the filter design problem is tackled and a set of the desired filters is explicitly characterized. A simulation example is provided to demonstrate the usefulness of the proposed design method.  相似文献   

15.
With the ability to deal with high non-linearity, artificial neural networks (ANNs) and support vector machines (SVMs) have been widely studied and successfully applied to time series prediction. However, good fitting results of ANNs and SVMs to nonlinear models do not guarantee an equally good prediction performance. One main reason is that their dynamics and properties are changing with time, and another key problem is the inherent noise of the fitting data. Nonlinear filtering methods have some advantages such as handling additive noises and following the movement of a system when the underlying model is evolving through time. The present paper investigates time series prediction algorithms by using a combination of nonlinear filtering approaches and the feedforward neural network (FNN). The nonlinear filtering model is established by using the FNN’s weights to present state equation and the FNN’s output to present the observation equation, and the input vector to the FNN is composed of the predicted signal with given length, then the extended Kalman filtering (EKF) and Unscented Kalman filtering (UKF) are used to online train the FNN. Time series prediction results are presented by the predicted observation value of nonlinear filtering approaches. To evaluate the proposed methods, the developed techniques are applied to the predictions of one simulated Mackey-Glass chaotic time series and one real monthly mean water levels time series. Generally, the prediction accuracy of the UKF-based FNN is better than the EKF-based FNN when the model is highly nonlinear. However, comparing from prediction accuracy and computational effort based on the prediction model proposed in our study, we draw the conclusion that the EKF-based FNN is superior to the UKF-based FNN for the theoretical Mackey-Glass time series prediction and the real monthly mean water levels time series prediction.  相似文献   

16.
The popularity of state-space models comes from their flexibilities and the large variety of applications they have been applied to. For multivariate cases, the assumption of normality is very prevalent in the research on Kalman filters. To increase the applicability of the Kalman filter to a wider range of distributions, we propose a new way to introduce skewness to state-space models without losing the computational advantages of the Kalman filter operations. The skewness comes from the extension of the multivariate normal distribution to the closed skew-normal distribution. To illustrate the applicability of such an extension, we present two specific state-space models for which the Kalman filtering operations are carefully described.  相似文献   

17.
An unscented filtering algorithm is derived for a class of nonlinear discrete-time stochastic systems using noisy observations which can be randomly delayed by one or two sample times. The update and the possible delays (of one and two sampling times) of any observation are modelled by using three Bernoulli random variables such that only one of them takes the value one. The algorithm performs in two-steps, prediction and update, and it uses a scaled unscented transformation to approximate the conditional mean and covariance of the state and observation at each time. The performance of the proposed filter is shown in a simulation example which uses a growth model with randomly delayed observations; in this example, the proposed filter is compared with the extended one obtained by linearizing the state and the observation equations and, also, with the unscented Kalman filter. A clear superiority of the proposed filter over the others is inferred.  相似文献   

18.
19.
孟祥旺  蒋威 《应用数学》2012,25(2):438-446
本文处理了一类具与模式有关的时变时滞和 Markovian转换的不确定奇异随机系统的鲁棒H∞滤波问题.所考虑的系统包含参数不确定性,Markovian参数,随机扰动和与模式有关的时变时滞.本文的目的是设计一个滤波器以保证滤波错误系统是正则的、无脉冲的、鲁棒指数均方稳定的和可达到一个给定的 H∞扰动衰减水平.文章首先得到所求鲁棒指数H∞滤波器存在的充分条件,然后给出所求滤波器参数的显示表示.  相似文献   

20.
This paper shows that the adaptive filtering and forecasting techniques proposed by Makridakis and Wheelwright can be viewed as approximations to a more precise filtering method in which the Kalman filter is applied to a dynamic autoregressive model which is a special case of the models of Harrison and Stevens. The correct "learning" or "training factors" are shown to be data-dependent matrices rather than scalar constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号