首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
[((t)Bu(3)SiS)MX[(12) are wheels for first row transition metals (M = Co, X = Cl; M = Ni, X = Br), but for nickel, simpler [e.g. [((t)Bu(3)SiS)Ni](2)(mu-SSi(t)Bu(3))(2)[ and more complicated [e.g. [(mu-SSi(t)Bu(3))Ni](5)(mu(5)-S)] structures are by-products.  相似文献   

2.
Treatment of CrCl(2)(THF)(2) with NaOSi(t)Bu(3) afforded the tetrameric "box" [Cr(mu-Cl)(mu-OSi(t)Bu(3))](4) (1, X-ray). THF cleaved 1 to provide trans-(silox)ClCr(THF)(2) (2), whereas degradation of 1 with 4-picoline caused disproportionation and the generation of trans-Cl(2)Cr(4-pic)(2) and trans-(silox)(2)Cr(4-pic)(x) (n = 2, 3; 3, 3-4-pic). Chromous centers in 1 were antiferromagnetically coupled, and density functional calculations on the high-spin (multiplicity = 17) model [Cr(mu-Cl)(mu-OH)](4) (1') revealed that its singly occupied 3d orbitals spanned an energy range of approximately 2 eV. The addition of 8 equiv of Na(silox) to 1 yielded [((t)Bu(3)SiO)Cr(mu-OSi(t)Bu(3))(2)]Na.C(6)H(6) (4, Y shaped, angle OCrO(Na) = 91.28(7) degrees), and treatment of 4 with dibenzo-18-crown-6 produced [(silox)(3)Cr][Na(dibenzo-18-crown-6)] (5, angle OCrO = approximately 120 degrees, (120 + alpha) degrees, (120 - alpha) degrees). Calculations of [((t)Bu(3)SiO)Cr(mu-OSi(t)Bu(3))(2)]Na (4') and Cr(silox)(3)(-) (5') provided reasonable matches with the experimental geometries (X-ray). The trigonal chromic derivative (silox)(3)Cr (6) was synthesized from CrCl(3)(THF)(3) for structural and calculational comparisons to the chromous derivatives.  相似文献   

3.
The sodium silyl chalcogenolates NaESiR(t)Bu(2) (R = Ph, (t)Bu; E = S, Se, Te), accessible by the nucleophilic degradation of S, Se, or Te by the sodium silanides NaSiR(t)Bu(2) (R = Ph, (t)Bu), have been characterized by X-ray structure analysis. Protonolysis of the sodium silyl chalcogenolates yields the corresponding chalcogenols. The Cu and Zn chalcogenolates, [Cu(SSiPh(t)Bu(2))](4) and [ZnCl(SSi(t)Bu(3))(THF)](2), have been synthesized by metathesis reactions of CuCl with NaSSiPh(t)Bu(2) and of ZnCl(2) with NaSSi(t)Bu(3), respectively. The solid-state structures of the transition metal thiolates have been determined. The compounds (t)Bu(2)RSiE-ESiR(t)Bu(2) (R = Ph, (t)Bu; E = S, Se, Te) are accessible via air oxidation. With the exception of (t)Bu(3)SiS-SSi(t)Bu(3), these compounds were analyzed using X-ray crystallography and represent the first structurally characterized silylated heavy dichalcogenides. Oxidative addition of (t)Bu(3)SiTe-TeSi(t)Bu(3) to Fe(CO)(5) yields [Fe(TeSi(t)Bu(3))(CO)(3)](2), which has also been structurally characterized.  相似文献   

4.
5.
Various sized siloxides (Cy(3)SiO > (t)Bu(3)SiO > (t)Bu(2)PhSiO > (t)Bu(2)MeSiO approximately (i)Pr(2)(t)BuSiO > (i)Pr(3)SiO > (t)Bu(2)HSiO) were used to make (R(2)R'SiO)(3)TaCl(2) (R = (t)Bu, R' = H (1-H), Me (1-Me), Ph (1-Ph), (t)Bu (1); R = (i)Pr, R' = (t)Bu (1-(i)Pr(2)); R = R' = (i)Pr (1-(i)Pr(3)); R = R' = (c)Hex (Cy)). Product analyses of sodium amalgam reductions of several dichlorides suggest that [(R(2)R'SiO)(3)Ta](2)(mu-Cl)(2) may be a common intermediate. When the siloxide is large (1-(t)Bu), formation of the Ta(III) species ((t)Bu(3)SiO)(3)Ta (6) occurs via disproportionation. When the siloxide is small, the Ta(IV) intermediate is stable (e.g., [((i)Pr(3)SiO)(3)Ta](2)(mu-Cl)(2) (2)), and when intermediate sized siloxides are used, solvent bond activation via unstable Ta(III) tris-siloxides is proposed to occur. Under hydrogen, reductions of 1-Me and 1-Ph provide Ta(IV) and Ta(V) hydrides [((t)Bu(2)MeSiO)(3)Ta](2)(micro-H)(2) (4-Me) and ((t)Bu(2)PhSiO)(3)TaH(2) (7-Ph), respectively.  相似文献   

6.
Reactions of (RNH)(3)PNSiMe(3) (3a, R = (t)()Bu; 3b, R = Cy) with trimethylaluminum result in the formation of {Me(2)Al(mu-N(t)Bu)(mu-NSiMe(3))P(NH(t)()Bu)(2)]} (4) and the dimeric trisimidometaphosphate {Me(2)Al[(mu-NCy)(mu-NSiMe(3))P(mu-NCy)(2)P(mu-NCy)(mu-NSiMe(3))]AlMe(2)} (5a), respectively. The reaction of SP(NH(t)Bu)(3) (2a) with 1 or 2 equiv of AlMe(3) yields {Me(2)Al[(mu-S)(mu-N(t)Bu)P(NH(t)()Bu)(2)]} (7) and {Me(2)Al[(mu-S)(mu-N(t)()Bu)P(mu-NH(t)Bu)(mu-N(t)Bu)]AlMe(2)} (8), respectively. Metalation of 4 with (n)()BuLi produces the heterobimetallic species {Me(2)Al[(mu-N(t)Bu)(mu-NSiMe(3))P(mu-NH(t)()Bu)(mu-N(t)()Bu)]Li(THF)(2)} (9a) and {[Me(2)Al][Li](2)[P(N(t)Bu)(3)(NSiMe(3))]} (10) sequentially; in THF solutions, solvation of 10 yields an ion pair containing a spirocyclic tetraimidophosphate monoanion. Similarly, the reaction of ((t)BuNH)(3)PN(t)()Bu with AlMe(3) followed by 2 equiv of (n)BuLi generates {Me(2)Al[(mu-N(t)Bu)(2)P(mu(2)-N(t)Bu)(2)(mu(2)-THF)[Li(THF)](2)} (11a). Stoichiometric oxidations of 10 and 11a with iodine yield the neutral spirocyclic radicals {Me(2)Al[(mu-NR)(mu-N(t)Bu)P(mu-N(t)Bu)(2)]Li(THF)(2)}(*) (13a, R = SiMe(3); 14a, R = (t)Bu), which have been characterized by electron paramagnetic resonance spectroscopy. Density functional theory calculations confirm the retention of the spirocyclic structure and indicate that the spin density in these radicals is concentrated on the nitrogen atoms of the PN(2)Li ring. When 3a or 3b is treated with 0.5 equiv of dibutylmagnesium, the complexes {Mg[(mu-N(t)()Bu)(mu-NH(t)()Bu)P(NH(t)Bu)(NSiMe(3))](2)} (15) and {Mg[(mu-NCy)(mu-NSiMe(3))P(NHCy)(2)](2)} (16) are obtained, respectively. The addition of 0.5 equiv of MgBu(2) to 2a results in the formation of {Mg[(mu-S)(mu-N(t)()Bu)P(NH(t)Bu)(2)](2)} (17), which produces the hexameric species {[MgOH][(mu-S)(mu-N(t)()Bu)P(NH(t)Bu)(2)]}(6) (18) upon hydrolysis. Compounds 4, 5a, 7-11a, and 15-17 have been characterized by multinuclear ((1)H, (13)C, and (31)P) NMR spectroscopy and, in the case of 5a, 9a.2THF, 11a, and 18, by X-ray crystallography.  相似文献   

7.
All attempts to synthesize (PNP)Ni(OTf) form instead ((t)Bu(2)PCH(2)SiMe(2)NSiMe(2)OTf)Ni(CH(2)P(t)Bu(2)). Abstraction of F(-) from (PNP)NiF by even a catalytic amount of BF(3) causes rearrangement of the (transient) (PNP)Ni(+) to analogous ring-opened [((t)Bu(2)PCH(2)SiMe(2)NSiMe(2)F)]Ni(CH(2)P(t)Bu(2)). Abstraction of Cl(-) from (PNP)NiCl with NaB(C(6)H(3)(CF(3))(2))(4) in CH(2)Cl(2) or C(6)H(5)F gives (PNP)NiB(C(6)H(3)(CF(3))(2))(4), the key intermediate in these reactions is (PNP)Ni(+), [(PNP)Ni](+), in which one Si-C bond (together with N and two P) donates to Ni. This makes this Si-C bond subject to nucleophilic attack by F(-), triflate, and alkoxide/ether (from THF). This σ(Si-C) complex binds CO in the time of mixing and also binds chloride, both at nickel. Evidence is offered of a "self-healing" process, where the broken Si-C bond can be reformed in an equilibrium process. (PNP)Ni(+) reacts rapidly with H(2) to give (PN(H)P)NiH(+), which can be deprotonated to form (PNP)NiH. A variety of nucleophilic attacks (and THF polymerization) on the coordinated Si-C bond are envisioned to occur perpendicular to the Si-C bond, based on the character of the LUMO of (PNP)Ni(+).  相似文献   

8.
Several iron(III) complexes incorporating diamidoether ligands are described. The reaction between [Li(2)[RN(SiMe(2))](2)O] and FeX(3) (X=Cl or Br; R=2,4,6-Me(3)Ph or 2,6-iPr(2)Ph) form unusual ate complexes, [FeX(2)Li[RN(SiMe(2))](2)O](2) (2, X=Cl, R=2,4,6-Me(3)Ph; 3, X=Br, R=2,4,6-Me(3)Ph; 4, X=Cl, R=2,6-iPr(2)Ph) which are stabilized by Li-pi interactions. These dimeric iron(III)-diamido complexes exhibit magnetic behaviour characteristic of uncoupled high spin (S= 5/2 ) iron(III) centres. They also undergo halide metathesis resulting in reduced iron(II) species. Thus, reaction of 2 with alkyllithium reagents leads to the formation of iron(II) dimer [Fe[Me(3)PhN(SiMe(2))](2)O](2) (6). Similarly, the previously reported iron(III)-diamido complex [FeCl[tBuN(SiMe(2))](2)O](2) (1) reacts with LiPPh(2) to yield the iron(II) dimer [Fe[tBuN(SiMe(2))](2)O](2) but reaction with LiNPh(2) gives the iron(II) product [Fe(2)(NPh(2))(2)[tBuN(SiMe(2))](2)O] (5). Some redox chemistry is also observed as side reactions in the syntheses of 2-4, yielding THF adducts of FeX(2): the one-dimensional chain [FeBr(2)(THF)(2)](n) (7) and the cluster [Fe(4)Cl(8)(THF)(6)]. The X-ray crystal structures of 3, 5 and 7 are described.  相似文献   

9.
A series of dinuclear triple-stranded complexes, [Fe(2)L(3)?X]X(6) [X = BF(4)(-) (1), ClO(4)(-) (2)], [Fe(2)L(3)?SO(4)](2)(SO(4))(5) (3), [Fe(2)L(3)?Br](BPh(4))(6) (4), Fe(2)L(3)(NO(3))Br(6) (5), and [Cu(2)L(3)?NO(3)](NO(3))(6) (6), which incorporate a central cavity to encapsulate different anions, have been synthesized via the self-assembly of iron(II) or copper(II) salts with the N,N'-bis[5-(2,2'-bipyridyl)methyl]imidazolium bromide (LBr) ligand. X-ray crystallographic studies (for 1-4 and 6) and elemental analyses confirmed the cagelike triple-stranded structure. The anionic guest is bound in the cage and shows remarkable influence on the outcome of the self-assembly process with regard to the configuration at the metal centers. The mesocates (with different configurations at the two metal centers) have formed in the presence of large tetrahedral anions, while helicates (with the same configuration at both metal centers) were obtained when using the relatively smaller spherical or trigonal-planar anions Br(-) or NO(3)(-).  相似文献   

10.
The reaction of ((t)BuNH)(3)PNSiMe(3) (1) with 1 equiv of (n)BuLi results in the formation of Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] (2); treatment of 2 with a second equivalent of (n)BuLi produces the dilithium salt Li(2)[P(NH(t)Bu)(N(t)Bu)(2)(NSiMe(3))] (3). Similarly, the reaction of 1 and (n)BuLi in a 1:3 stoichiometry produces the trilithiated species Li(3)[P(N(t)Bu)(3)(NSiMe(3))] (4). These three complexes represent imido analogues of dihydrogen phosphate [H(2)PO(4)](-), hydrogen phosphate [HPO(4)](2)(-), and orthophosphate [PO(4)](3)(-), respectively. Reaction of 4 with alkali metal alkoxides MOR (M = Li, R = SiMe(3); M = K, R = (t)Bu) generates the imido-alkoxy complexes [Li(3)[P(N(t)Bu)(3)(NSiMe(3))](MOR)(3)] (8, M = Li; 9, M = K). These compounds were characterized by multinuclear ((1)H, (7)Li, (13)C, and (31)P) NMR spectroscopy and, in the cases of 2, 8, and 9.3THF, by X-ray crystallography. In the solid state, 2 exists as a dimer with Li-N contacts serving to link the two Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] units. The monomeric compounds 8 and 9.3THF consist of a rare M(3)O(3) ring coordinated to the (LiN)(3) unit of 4. The unexpected formation of the stable radical [(Me(3)SiN)P(mu(3)-N(t)Bu)(3)[mu(3)-Li(THF)](3)(O(t)Bu)] (10) is also reported. X-ray crystallography indicated that 10 has a distorted cubic structure consisting of the radical dianion [P(N(t)Bu)(3)(NSiMe(3))](.2)(-), two lithium cations, and a molecule of LiO(t)Bu in the solid state. In dilute THF solution, the cube is disrupted to give the radical monoanion [(Me(3)SiN)((t)BuN)P(mu-N(t)Bu)(2)Li(THF)(2)](.-), which was identified by EPR spectroscopy.  相似文献   

11.
Novel yttrium chelating diamide complexes [(Y[ArN(CH(2))(x)NAr](Z)(THF)(n))(y)] (Z = I, CH(SiMe(3))(2), CH(2)Ph, H, N(SiMe(3))(2), OC(6)H(3)-2,6-(t)Bu(2)-4-Me; x = 2, 3; n = 1 or 2; y = 1 or 2) were made via salt metathesis of the potassium diamides (x = 3 (3), x = 2 (4)) and yttrium triiodide in THF (5,10), followed by salt metathesis with the appropriate potassium salt (6-9, 11-13, 15) and further reaction with molecular hydrogen (14). 6 and 11(Z = CH(SiMe(3))(2), x = 2, 3) underwent unprecedented exchange of yttrium for silicon on reaction with phenylsilane to yield (Si[ArN(CH(2))(x)NAr]PhH) (x = 2 (16), 3) and (Si[CH(SiMe(3))(2)]PhH(2)).  相似文献   

12.
The anionic {Fe(NO)2}(9) DNIC[(NO)2Fe(C3H3N2)2](-) (2) (C3H3N2 = deprotonated imidazole) containing the deprotonated imidazole-coordinated ligands and DNICs [(NO)2Fe(C3H3N2)(SR)](-) (R = (t)Bu(3), Et(4), Ph(5)) containing the mixed deprotonated imidazole-thiolate coordinated ligands, respectively, were synthesized by thiol protonation or thiolate(s) ligand-exchange reaction. The anionic {Fe(NO)2}(9) DNICs 2- 5 were characterized by IR, UV-vis, EPR, and single-crystal X-ray diffraction. The facile transformation among the anionic {Fe(NO)2}(9) DNICs 2- 5 and [(NO)2Fe(S(t)Bu)2](-)/[(NO)2Fe(SEt)2](-)/[(NO)2Fe(SPh)2](-) was demonstrated in this systematic study. Of importance, the distinct electron-donating ability of thiolates serve to regulate the stability of the anionic {Fe(NO)2}(9) DNICs and the ligand-substitution reactions of DNICs. At 298 K, DNIC 2 exhibits the nine-line EPR signal with g = 2.027 (aN(NO) = 2.20 and aN(Im-H) = 3.15 G; Im-H = deprotonated imidazole) and DNIC 3 displays the nine-line signals with g = 2.027 (aN(NO) = 2.35 and aN(Im-H) = 4.10 G). Interestingly, the EPR spectrum of complex 4 exhibits a well-resolved 11-line pattern with g = 2.027 (aN(NO) = 2.50, aN(Im-H) = 4.10 G, and aH = 1.55 G) at 298 K. The EPR spectra (the pattern of hyperfine splitting) in combination with IR nu NO spectra (DeltanuNO = the separation of NO stretching frequencies, DeltanuNO = approximately 62 cm (-1) for 2 vs approximately 50 cm(-1) for 3- 5 vs approximately 43 cm(-1) for [(NO)2Fe(S(t)Bu)2](-)/[(NO)2Fe(SEt)2](-)/[(NO)2Fe(SPh)2](-)) may serve as an efficient tool for the discrimination of the existence of the anionic {Fe(NO)2}(9) DNICs containing the different ligations [N,N]/[N,S]/[S,S].  相似文献   

13.
Tetrahedral FeCl[N(SiMe(3))(2)](2)(THF) (2), prepared from FeCl(3) and 2 equiv of Na[N(SiMe(3))(2)] in THF, is a useful ferric starting material for the synthesis of weak-field iron-imide (Fe-NR) clusters. Protonolysis of 2 with aniline yields azobenzene and [Fe(2)(mu-Cl)(3)(THF)(6)](2)[Fe(3)(mu-NPh)(4)Cl(4)] (3), a salt composed of two diferrous monocations and a trinuclear dianion with a formal 2 Fe(III)/1 Fe(IV) oxidation state. Treatment of 2 with LiCl, which gives the adduct [FeCl(2)(N(SiMe(3))(2))(2)](-) (isolated as the [Li(TMEDA)(2)](+) salt), suppresses arylamine oxidation/iron reduction chemistry during protonolysis. Thus, under appropriate conditions, the reaction of 1:1 2/LiCl with arylamine provides a practical route to the following Fe-NR clusters: [Li(2)(THF)(7)][Fe(3)(mu-NPh)(4)Cl(4)] (5a), which contains the same Fe-NR cluster found in 3; [Li(THF)(4)](2)[Fe(3)(mu-N-p-Tol)(4)Cl(4)] (5b); [Li(DME)(3)](2)[Fe(2)(mu-NPh)(2)Cl(4)] (6a); [Li(2)(THF)(7)][Fe(2)(mu-NMes)(2)Cl(4)] (6c). [Li(DME)(3)](2)[Fe(4)(mu(3)-NPh)(4)Cl(4)] (7), a trace product in the synthesis of 5a and 6a, forms readily as the sole Fe-NR complex upon reduction of these lower nuclearity clusters. Products were characterized by X-ray crystallographic analysis, by electronic absorption, (1)H NMR, and M?ssbauer spectroscopies, and by cyclic voltammetry. The structures of the Fe-NR complexes derive from tetrahedral iron centers, edge-fused by imide bridges into linear arrays (5a,b; 6a,c) or the condensed heterocubane geometry (7), and are homologous to fundamental iron-sulfur (Fe-S) cluster motifs. The analogy to Fe-S chemistry also encompasses parallels between Fe-mediated redox transformations of nitrogen and sulfur ligands and reductive core conversions of linear dinuclear and trinuclear clusters to heterocubane species and is reinforced by other recent examples of iron- and cobalt-imide cluster chemistry. The correspondence of nitrogen and sulfur chemistry at iron is intriguing in the context of speculative Fe-mediated mechanisms for biological nitrogen fixation.  相似文献   

14.
The ambidentate dianions [(t)BuN(E)P(mu-N(t)Bu)(2)P(E)N(t)Bu](2)(-) (5a, E = S; 5b, E = Se) are obtained as their disodium and dipotassium salts by the reaction of cis-[(t)Bu(H)N(E)P(mu-N(t)Bu)(2)P(E)N(H)(t)Bu] (6a, E = S; 6b, E = Se), with 2 equiv of MN(SiMe(3))(2) (M = Na, K) in THF at 23 degrees C. The corresponding dilithium derivative is prepared by reacting 6a with 2 equiv of (t)BuLi in THF at reflux. The X-ray structures of five complexes of the type [(THF)(x)()M](2)[(t)BuN(E)P(mu-N(t)Bu)(2)P(E)N(t)Bu] (9, M = Li, E = S, x = 2; 11a/11b, M = Na, E = S/Se, x = 2; 12a, M = K, E = S, x = 1; 12b, M = K, E = Se, x = 1.5) have been determined. In the dilithiated derivative 9 the dianion 5a adopts a bis (N,S)-chelated bonding mode involving four-membered LiNPS rings whereas 11a,b and 12a,b display a preference for the formation of six-membered MNPNPN and MEPNPE rings, i.e., (N,N' and E,E')-chelation. The bis-solvated disodium complexes 11a,b and the dilithium complex 9 are monomeric, but the dipotassium complexes 12a,b form dimers with a central K(2)E(2) ring and associate further through weak K.E contacts to give an infinite polymeric network of 20-membered K(6)E(6)P(4)N(4) rings. The monoanions [(t)Bu(H)N(E)P(mu-N(t)Bu)(2)P(E)N(t)Bu)](-) (E = S, Se) were obtained as their lithium derivatives 8a and 8b by the reaction of 1 equiv of (n)BuLi with 6a and 6b, respectively. An X-ray structure of the TMEDA-solvated complex 8a and the (31)P NMR spectrum of 8b indicate a N,E coordination mode. The reaction of 6b with excess (t)BuLi in THF at reflux results in partial deselenation to give the monolithiated P(III)/P(V) complex [(THF)(2)Li[(t)BuN(Se)P(mu-N(t)Bu)(2)PN(H)(t)Bu]] 10, which adopts a (N,Se) bonding mode.  相似文献   

15.
We report the syntheses, X-ray structures, and reductive electrochemistry of the Fe(II) complexes [(dmgBF(2))(2)Fe(MeCN)(2)] (1; dmg = dimethylglyoxime, MeCN = acetonitrile) and [(dmgBF(2))Fe((t)Bu(i)NC)(2)] (2; (t)Bu(i)NC = tert-butylisocyanide). The reaction of 1 with Na/Hg amalgam led to isolation and the X-ray structure of [(dmgBF(2))(2)Fe(glyIm)] (3; glyIm = glyimine), wherein the (dmgBF(2))(2) macrocyclic frame is bent to accommodate the binding of a bidentate apical ligand. We also report the X-ray structure of a rare mixed-valence Fe(4) cluster with supporting dmg-type ligands. In the structure of [(dmg(2)BF(2))(3)Fe(3)((1)/(2)dmg)(3)Fe(O)(6)] (4), the (dmgBF(2))(2) macrocycle has been cleaved, eliminating BF(2) groups. Density functional theory calculations and electron paramagnetic resonance data are in accordance with a central Fe(III) ion surrounded by three formally Fe(II)dmg(2)BF(2) units.  相似文献   

16.
Self-assembly of four bis(pyridyl) ligands with longer flexible spacer: 1,4-bis(3-pyridylaminomethyl)benzene (L1), 1,4-bis(2-pyridylaminomethyl)benzene (L2), 1,3-bis(3-pyridylaminomethyl)benzene (L3) and 1,3-bis(2-pyridylaminomethyl)benzene (L4), and CuX (X = Br and I) leads to the formation of eight [Cu(n)X(n)]-based (X = Br and I; n = 1, 2, and 4) complexes, [Cu(2)I(2)L1(PPh(3))(4)] (1), [Cu(4)Cl(2)Br(2)(L4)(2)(PPh(3))(6)]·(CH(3)CN)(2) (2), [Cu(2)I(2)(L3)(2)] (3), {[Cu(2)Br(2)L2(PPh(3))(2)]·(CH(2)Cl(2))(2)}(n) (4), [CuIL1](n)·nCH(2)Cl(2) (5), [CuIL1](n) (6), [CuIL4](n) (7) and [Cu(2)I(2)L4](n) (8), which have been synthesized and characterized by elemental analysis, IR, TG, powder and single-crystal X-ray diffraction. Structural analyses show that the eight complexes possess an increasing dimensionality from 0D (1-3) to 1D (4) to 2D (5-8), in which 1 and 2 contain a CuX unit, 2-7 contain a Cu(2)X(2) unit and 8 contains a Cu(4)X(4) unit. Such evolvement indicates that the conformation of flexible bis(pyridyl) ligands and the participation of triphenylphosphine (PPh(3)) as a second ligand take an essential role in the framework formation of the Cu(i) complexes. Moreover, a pair of symmetry-related L3 ligands in complex 3 coordinate to the rhomboid Cu(2)I(2) dimer to form "handcuff-shaped" dinuclear structures, which are further joined together through intermolecular N-HI hydrogen bonds to furnish a 2D (4,4) layer. Although complexes 5 and 6 exhibit a similar 2D (4,4) layer constructed from L1 ligand bridging [Cu(2)I(2)](n) units, the different packing fashion of the layers leads to the formation of 3D porous frameworks of 5 and dense 3D frameworks of 6. The "twisted-boat" conformation of the Cu(4)I(4) tetramer unit in complex 8 has not been reported so far.  相似文献   

17.
The [Z(2)Ln(THF)](2)(mu-eta(2)():eta(2)()-N(2)) complexes (Z = monoanionic ligand) generated by reduction of dinitrogen with trivalent lanthanide salts and alkali metals are strong reductants in their own right and provide another option in reductive lanthanide chemistry. Hence, lanthanide-based reduction chemistry can be effected in a diamagnetic trivalent system using the dinitrogen reduction product, [(C(5)Me(5))(2)(THF)La](2)(mu-eta(2)():eta(2)()-N(2)), 1, readily obtained from [(C(5)Me(5))(2)La][BPh(4)], KC(8), and N(2). Complex 1 reduces phenazine, cyclooctatetraene, anthracene, and azobenzene to form [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(12)H(8)N(2))], 2, (C(5)Me(5))La(C(8)H(8)), 3, [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(14)H(10))], 4, and [(C(5)Me(5))La(mu-eta(2)-(PhNNPh)(THF)](2), 5, respectively. Neither stilbene nor naphthalene are reduced by 1, but 1 reduces CO to make the ketene carboxylate complex {[(C(5)Me(5))(2)La](2)[mu-eta(4)-O(2)C-C=C=O](THF)}(2), 6, that contains CO-derived carbon atoms completely free of oxygen.  相似文献   

18.
Two enantiomers of [Bu(4)N](3)[Cu(3)(mnt)(3)] () formed by Na(2)(mnt) (mnt = maleonitriledithiolate, [S(2)C(2)(CN)(2)](2-)) and CuCl in a 1 : 1 molar ratio react further with MCl (M = Cu or Ag) involving both the enantiomers of to produce the larger complex, [Bu(4)N](4)[Cu(6)M(2)(mnt)(6)] (M = Cu (2), Ag (3)) from which the capped Cu(+) or Ag(+) ion can readily be removed by Bu(4)NX (X = Cl, Br), reverting or back to . Such reversal does not work with non-coordinating anions like BF(4)(-), ClO(4)(-) and PF(6)(-).  相似文献   

19.
From the reaction of Ni(COD)(2) (COD = cyclooctadiene) in dry diethylether with 2 equiv of 2-phenyl-1,4-bis(isopropyl)-1,4-diazabutadiene (L(Ox))(0) under an Ar atmosphere, dark red, diamagnetic microcrystals of [Ni(II)(L*)(2)] (1) were obtained where (L*)(1-) represents the pi radical anion of neutral (L(Ox))(0) and (L(Red))(2-) is the closed shell, doubly reduced form of (L(Ox))(0). Oxidation of 1 with 1 equiv of ferrocenium hexafluorophosphate in CH(2)Cl(2) yields a paramagnetic (S = 1/2), dark violet precipitate of [Ni(I)(L(Ox))(2)](PF(6)) (2) which represents an oxidatively induced reduction of the central nickel ion. From the same reaction but with 2 equiv of [Fc](PF(6)) in CH(2)Cl(2), light green crystals of [Ni(II)(L(Ox))(2)(FPF(5))](PF(6)) (3) (S = 1) were obtained. If the same reaction was carried out in tetrahydrofuran, crystals of [Ni(II)(L(Ox))(2)(THF)(FPF(5))](PF(6)) x THF (4) (S = 1) were obtained. Compounds 1, 2, 3, and 4 were structurally characterized by X-ray crystallography: 1 and 2 contain a tetrahedral neutral complex and a tetrahedral monocation, respectively, whereas 3 contains the five-coordinate cation [Ni(II)(L(Ox))(2)(FPF(5))](+) with a weakly coordinated PF(6)(-) anion and in 4 the six-coordinate monocation [Ni(II)(L(Ox))(2)(THF)(FPF(5))](+) is present. The electro- and magnetochemistry of 1-4 has been investigated by cyclic voltammetry and SQUID measurements. UV-vis and EPR spectroscopic data for all compounds are reported. The experimental results have been confirmed by broken symmetry DFT calculations of [Ni(II)(L*)(2)](0), [Ni(I)(L(Ox))(2)](+), and [Ni(II)(L(Ox))(2)](2+) in comparison with calculations of the corresponding Zn complexes: [Zn(II)((t)L(Ox))(2)](2+), [Zn(II)((t)L(Ox))((t)L*)](+), [Zn(II)((t)L*)(2)](0), and [Zn(II)((t)L*)((t)L(Red))](-) where ((t)L(Ox))(0) represents the neutral ligand 1,4-di-tert-butyl-1,4-diaza-1,3-butadiene and ((t)L*)(1-) and ((t)L(Red))(2-) are the corresponding one- and two-electron reduced forms. It is clearly established that the electronic structures of both paramagnetic monocations [Ni(I)(L(Ox))(2)](+) (S = 1/2) and [Zn(II)((t)L(Ox))((t)(L*)](+) (S = 1/2) are different.  相似文献   

20.
By interaction of MoX(3)(THF)(3) with [Cat]X in THF, the salts [Cat][MoX(4)(THF)(2)] have been synthesized [X = I, Cat = PPh(4), NBu(4), NPr(4), (Ph(3)P)(2)N; X = Br, Cat = NBu(4), PPh(4) (Ph(3)P)(2)N]. Mixed-halide species [MoX(3)Y(THF)(2)](-) (X, Y = Cl, Br, I) have also been generated in solution and investigated by (1)H-NMR. When the tetraiodo, tetrabromo, and mixed bromoiodo salts are dissolved in CH(2)Cl(2), clean loss of all coordinated THF is observed by (1)H-NMR. On the other hand, [MoCl(4)(THF)(2)](-) loses only 1.5 THF/Mo. The salts [Cat](3)[Mo(3)X(12)] (X = Br, I) have been isolated from [Cat][MoX(4)(THF)(2)] or by running the reaction between MoX(3)(THF)(3) and [Cat]X directly in CH(2)Cl(2). The crystal structure of [PPh(4)](3)[Mo(3)I(12)] exhibits a linear face-sharing trioctahedron for the trianion: triclinic, space group P&onemacr;; a = 11.385(2), b = 12.697(3), c = 16.849(2) ?; alpha = 76.65(2), beta = 71.967(12), gamma = 84.56(2) degrees; Z = 1; 431 parameters and 3957 data with I > 2sigma(I). The metal-metal distance is 3.258(2) ?. Structural and magnetic data are consistent with the presence of a metal-metal sigma bond order of (1)/(2) and with the remaining 7 electrons being located in 7 substantially nonbonding orbitals. The ground state of the molecule is predicted to be subject to a Jahn-Teller distortion, which is experimentally apparent from the nature of the thermal ellipsoid of the central Mo atom. The [Mo(3)X(12)](3)(-) ions reacts with phosphines (PMe(3), dppe) to form products of lower nuclearity by rupture of the bridging Mo-X bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号