首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trigonometric polynomials of Fejér and Young are defined by $S_n (x) = \sum\nolimits_{k = 1}^n {\tfrac{{\sin (kx)}} {k}}$S_n (x) = \sum\nolimits_{k = 1}^n {\tfrac{{\sin (kx)}} {k}} and $C_n (x) = 1 + \sum\nolimits_{k = 1}^n {\tfrac{{\cos (kx)}} {k}}$C_n (x) = 1 + \sum\nolimits_{k = 1}^n {\tfrac{{\cos (kx)}} {k}}, respectively. We prove that the inequality $\left( {{1 \mathord{\left/ {\vphantom {1 9}} \right. \kern-\nulldelimiterspace} 9}} \right)\sqrt {15} \leqslant {{C_n \left( x \right)} \mathord{\left/ {\vphantom {{C_n \left( x \right)} {S_n \left( x \right)}}} \right. \kern-\nulldelimiterspace} {S_n \left( x \right)}}$\left( {{1 \mathord{\left/ {\vphantom {1 9}} \right. \kern-\nulldelimiterspace} 9}} \right)\sqrt {15} \leqslant {{C_n \left( x \right)} \mathord{\left/ {\vphantom {{C_n \left( x \right)} {S_n \left( x \right)}}} \right. \kern-\nulldelimiterspace} {S_n \left( x \right)}} holds for all n ≥ 2 and x ∈ (0, π). The lower bound is sharp.  相似文献   

2.
We suggest a new approach to studying the isochronism of the system
${{dx} \mathord{\left/ {\vphantom {{dx} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = - y + p_n (x,y),{{dy} \mathord{\left/ {\vphantom {{dy} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = x + q_n (x,y),$
where p n and q n are homogeneous polynomials of degree n. This approach is based on the normal form
${{dX} \mathord{\left/ {\vphantom {{dX} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = - Y + XS(X,Y),{{dY} \mathord{\left/ {\vphantom {{dY} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = X + YS(X,Y)$
and its analog in polar coordinates. We prove a theorem on sufficient conditions for the strong isochronism of a center and a focus for the reduced system and obtain examples of centers with strong isochronism of degrees n = 4, 5. The present paper is the first to give examples of foci with strong isochronism for the system in question.
  相似文献   

3.
The nonparametric regression problem has the objective of estimating conditional expectation. Consider the model $$Y = R(X) + Z$$ , where the random variableZ has mean zero and is independent ofX. The regression functionR(x) is the conditional expectation ofY givenX = x. For an estimator of the form $$R_n (x) = \sum\limits_{i = 1}^n {Y_i K{{\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} \mathord{\left/ {\vphantom {{\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} {\sum\limits_{i = 1}^n {K\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} }}} \right. \kern-\nulldelimiterspace} {\sum\limits_{i = 1}^n {K\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} }}} $$ , we obtain the rate of strong uniform convergence $$\mathop {\sup }\limits_{x\varepsilon C} \left| {R_n (x) - R(x)} \right|\mathop {w \cdot p \cdot 1}\limits_ = o({{n^{{1 \mathord{\left/ {\vphantom {1 {(2 + d)}}} \right. \kern-\nulldelimiterspace} {(2 + d)}}} } \mathord{\left/ {\vphantom {{n^{{1 \mathord{\left/ {\vphantom {1 {(2 + d)}}} \right. \kern-\nulldelimiterspace} {(2 + d)}}} } {\beta _n \log n}}} \right. \kern-\nulldelimiterspace} {\beta _n \log n}}),\beta _n \to \infty $$ . HereX is ad-dimensional variable andC is a suitable subset ofR d .  相似文献   

4.
It is established that H. Bohr’s inequality \(\sum\nolimits_{k = 0}^\infty {\left| {{{f^{\left( k \right)} \left( 0 \right)} \mathord{\left/ {\vphantom {{f^{\left( k \right)} \left( 0 \right)} {\left( {2^{{k \mathord{\left/ {\vphantom {k 2}} \right. \kern-\nulldelimiterspace} 2}} k!} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2^{{k \mathord{\left/ {\vphantom {k 2}} \right. \kern-\nulldelimiterspace} 2}} k!} \right)}}} \right| \leqslant \sqrt 2 \left\| f \right\|_\infty }\) is sharp on the class H .  相似文献   

5.
We consider a finite XXZ spin chain with periodic boundary conditions and an odd number of sites. It appears that for the special value of the asymmetry parameter = –1/2, the ground state of this system described by the Hamiltonian has the energy E 0 = –3N/2. Although the ground state is antiferromagnetic, we can find the corresponding solution of the Bethe equations. Specifically, we can explicitly construct a trigonometric polynomial Q(u) of degree n = (N–1)/2, whose zeros are the parameters of the Bethe wave function for the ground state of the system. As is known, this polynomial satisfies the Baxter TQ equation. This equation also has a second independent solution corresponding to the same eigenvalue of the transfer matrix T. We use this solution to find the derivative of the ground-state energy of the XXZ chain with respect to the crossing parameter . This derivative is directly related to one of the spin–spin correlators, which appears to be . In turn, this correlator gives the average number of spin strings for the ground state of the chain, . All these simple formulas fail if the number N of chain sites is even.  相似文献   

6.
LetN C (x) be the number of integersmx such that there is an integera with 1≤a<m, (a, m)=1 and all partial quotients in the continued fraction expansion ofa/m are at mostC. We prove for allx≥1 that $$N_c (x) > {1 \mathord{\left/ {\vphantom {1 {\sqrt {2C} x^{{1 \mathord{\left/ {\vphantom {1 {2(1 - 1/C^2 )}}} \right. \kern-\nulldelimiterspace} {2(1 - 1/C^2 )}}} }}} \right. \kern-\nulldelimiterspace} {\sqrt {2C} x^{{1 \mathord{\left/ {\vphantom {1 {2(1 - 1/C^2 )}}} \right. \kern-\nulldelimiterspace} {2(1 - 1/C^2 )}}} }}$$ .  相似文献   

7.
It is shown by analytical means that, if one assumes the Riemann hypothesis, the asymptotic formula $$\sum\limits_{n \leqslant x} {\omega (n) = x 1n1n } x + B - x\int_l^{x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } {\frac{{\{ t\} }}{{t^2 (1n x - 1n t)}}dt + O(x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} + \varepsilon } )} $$ holds. This improves a result ofB. Saffari, who got a weaker error term by using the Dirichlet “hyperbola method”. The above formula, in turn, implies the Riemann hypothesis.  相似文献   

8.
The paper describes a systematic computational study of the prime counting function π(x) and three of its analytic approximations: the logarithmic integral \({\text{li}}{\left( x \right)}: = {\int_0^x {\frac{{dt}}{{\log \,t}}} }\), \({\text{li}}{\left( x \right)} - \frac{1}{2}{\text{li}}{\left( {{\sqrt x }} \right)}\), and \(R{\left( x \right)}: = {\sum\nolimits_{k = 1}^\infty {{\mu {\left( k \right)}{\text{li}}{\left( {x^{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}} } \right)}} \mathord{\left/ {\vphantom {{\mu {\left( k \right)}{\text{li}}{\left( {x^{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}} } \right)}} k}} \right. \kern-\nulldelimiterspace} k} }\), where μ is the Möbius function. The results show that π(x)x) for 2≤x≤1014, and also seem to support several conjectures on the maximal and average errors of the three approximations, most importantly \({\left| {\pi {\left( x \right)} - {\text{li}}{\left( x \right)}} \right|} < x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}\) and \( - \frac{2}{5}x^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} < {\int_2^x {{\left( {\pi {\left( u \right)} - {\text{li}}{\left( u \right)}} \right)}du < 0} }\) for all x>2. The paper concludes with a short discussion of prospects for further computational progress.  相似文献   

9.
Forn a positive integer letp(n) denote the number of partitions ofn into positive integers and letp(n,k) denote the number of partitions ofn into exactlyk parts. Let , thenP(n) represents the total number of parts in all the partitions ofn. In this paper we obtain the following asymptotic formula for .  相似文献   

10.
Zucker  I.J.  Joyce  G.S.  Delves  R.T. 《The Ramanujan Journal》1998,2(3):317-326
The integral $$\int_0^{{\pi \mathord{\left/ {\vphantom {\pi 4}} \right. \kern-\nulldelimiterspace} 4}} {\ln \left( {\cos ^{{m \mathord{\left/ {\vphantom {m n}} \right. \kern-\nulldelimiterspace} n}} \theta \pm \sin ^{{m \mathord{\left/ {\vphantom {m n}} \right. \kern-\nulldelimiterspace} n}} \theta } \right)d\theta } $$ where m and n are relatively prime positive integers, is evaluated exactly in terms of elementary functions and the Catalan constant G.  相似文献   

11.
LetL(x) denote the number of square full integers ≤x. By a square-full integer, we mean a positive integer all of whose prime factors have multiplicity at least two. It is well known that $$\left. {L(x)} \right| \sim \frac{{\zeta ({3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2})}}{{\zeta (3)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})}}{{\zeta (2)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ where ζ(s) denotes the Riemann Zeta function. Let Δ(x) denote the error function in the asymptotic formula forL(x). On the basis of the Riemann hypothesis (R.H.), it is known that \(\Delta (x) = O(x^{\tfrac{{13}}{{81}} + \varepsilon } )\) for every ε>0. In this paper, we prove the following results on the assumption of R.H.: (1) $$\frac{1}{x}\int\limits_1^x {\Delta (t)dt} = O(x^{\tfrac{1}{{12}} + \varepsilon } ),$$ (2) $$\int\limits_1^x {\frac{{\Delta (t)}}{t}\log } ^{v - 1} \left( {\frac{x}{t}} \right) = O(x^{\tfrac{1}{{12}} + \varepsilon } )$$ for any integer ν≥1. In fact, we prove some general results and deduce the above from them. On the basis of (1) and (2) above, we conjecture that \(\Delta (x) = O(x^{{1 \mathord{\left/ {\vphantom {1 {12}}} \right. \kern-0em} {12}} + \varepsilon } )\) under the assumption of R.H.  相似文献   

12.
We study inequalities of the form $$ \tau (w(A)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} f(A)w(A)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ) \leqslant \tau (w(A)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} f(B)w(A)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ),A \leqslant B $$ where τ is a trace on a von Neumann algebra or a C*-algebra, A and B are self-adjoint elements of the algebra in question, f and w are real-valued functions, and the “weight” function w is nonnegative.  相似文献   

13.
Let \(T(x) = \sum\limits_{ord(G) \leqq x} {t(G),} \) , wheret(G) define the number of direct factors of a finite Abelian group.E. Krätzel ([5]) defined a remainderΔ 1(x) in the asymptotic ofT(x) and proved $$\Delta _1 (x)<< x^{{5 \mathord{\left/ {\vphantom {5 {12}}} \right. \kern-\nulldelimiterspace} {12}}} \log ^4 x.$$ Using two different methods to estimate a special three-dimensional exponential sum we get the better results $$\Delta _1 (x)<< x^{{{282} \mathord{\left/ {\vphantom {{282} {683}}} \right. \kern-\nulldelimiterspace} {683}}} \log ^4 x$$ and $$\Delta _1 (x)<< x^{{{45} \mathord{\left/ {\vphantom {{45} {109}}} \right. \kern-\nulldelimiterspace} {109}} + \varepsilon } (\varepsilon > 0).$$   相似文献   

14.
LetL(x) denote the number of square-full integers not exceedingx. It is well-known that $$L\left( x \right) \sim \frac{{\zeta \left( {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{\zeta \left( 3 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta \left( {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} \right)}}{{\zeta \left( 2 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ whereζ(s) denotes the Riemann Zeta function, LetΔ(x) denote the error function in the asymptotic formula forL(x). On the assumption of the Riemann hypothesis (R.H.), it is known that $$\Delta x = O\left( {x^{13/81 + 8} } \right)$$ for everyε > 0. In this paper, we prove on the assumption of R.H. that $$\frac{1}{x}\int\limits_x^1 {\left| {\Delta \left( t \right)} \right|dt = O\left( {x^{1/10 + ^8 } } \right)} .$$ In fact, we prove a more general result. We conjecture that $$\Delta x = O\left( {x^{1/10 + ^8 } } \right)$$ under the assumption of the R.H.  相似文献   

15.
We obtain the new exact Kolmogorov-type inequality
for 2-periodic functions and any k, r N, k < r. We present applications of this inequality to problems of approximation of one class of functions by another class and estimates of K-functional type.  相似文献   

16.
We indicate criteria for the coincidence of the Knopp kernels K(f) K(A f), and K (R f) of bounded functions f(t); here,
. In Particular, we prove that K(f) = K(A f) ⇔ K(f) = K(R f). Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 12, pp. 1712–1714, December, 1998.  相似文献   

17.
The paper is devoted to study the asymptotic behaviour of zerosz n of an entire function of Mittag-Leffler's type
0,\mu \in C.}}} \right. \kern-\nulldelimiterspace} {\Gamma (\mu + {n \mathord{\left/ {\vphantom {n \rho }} \right. \kern-\nulldelimiterspace} \rho }),\rho > 0,\mu \in C.}}}$$ " align="middle" vspace="20%" border="0">  相似文献   

18.
In this paper,the parameterized Marcinkiewicz integrals with variable kernels defined by μΩ^ρ(f)(x)=(∫0^∞│∫│1-y│≤t Ω(x,x-y)/│x-y│^n-p f(y)dy│^2dt/t1+2p)^1/2 are investigated.It is proved that if Ω∈ L∞(R^n) × L^r(S^n-1)(r〉(n-n1p'/n) is an odd function in the second variable y,then the operator μΩ^ρ is bounded from L^p(R^n) to L^p(R^n) for 1 〈 p ≤ max{(n+1)/2,2}.It is also proved that,if Ω satisfies the L^1-Dini condition,then μΩ^ρ is of type(p,p) for 1 〈 p ≤ 2,of the weak type(1,1) and bounded from H1 to L1.  相似文献   

19.
Sunto Si studia il problema della determinazione di una soluzione dell'equazione ak(x)∂ku/∂xk=f(x, y) entro la semistriscia a≤x≤b, y≥0, che assuma assegnati valori per y=0 e per x=a, x1, x2, b (a<x1<x2<b). Analogamente si studia il problema della determinazione di una soluzione dell' equazione ak(x)∂ku/∂xk+b(x)∂u/∂y=f(x,y), entro la medesima semistriscia, cha assuma assegnati valori per y=0 e per x=a, x1, x2, b e la cui ∂/∂y assuma assegnati valori per y=0. A Giovanni Sansone nel suo 70mo compleanno.  相似文献   

20.
It is proposed that the Gaussian type distribution constantb qi in the Gaussian model depends on the coordination numberq i of sitei, and that the relation holds amongb qi ’s. The Gaussian model is then studied on a family of the diamond-type hierarchical (or DH) lattices, by the decimation real-space renormalization group following spin-rescaling method. It is found that the magnetic property of the Gaussian model belongs to the same universal class, and that the critical pointK* and the critical exponentv are given by and , respectively. Project supported by the National Natural Science Foundation of China (Grant No. 19775008), the National Basic Research Project supported by the National Natural Science Foundation of China (Grant No. 19775008), the National Basic Research Project supported by the National Natural Science Foundation of China (Grant No. 19775008), the National Basic Research  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号