首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A monochromated (scanning) transmission electron microscope was used to analyze individual sub-micron grains within interplanetary dust particles (IDP). Using low-loss and core-loss electron energy-loss spectroscopy, we analyzed fluid and gas inclusions within vesiculated alumosilicate grains. It is shown that nanometer-sized vesicles contain predominantly molecular oxygen (O(2)) beside a small fraction of H(2)O. Low-loss spectra reveal the Schumann-Runge continuum peaking at 8.6 eV and absorption bands reflecting vibrational excitation states of O(2) molecules between the first (12.1 eV) and second (16.1 eV) ionization energy. The presence of oxygen gas is supported by the corresponding oxygen K-edge fine structure. The valence state of Fe in iron-oxide within the IDP was also studied. Low-loss spectra provide qualitative information about the oxidation state of iron consistent with the Fe(2+)/Fe(3+) ratio quantitatively derived from the Fe L(2,3) edge.  相似文献   

2.
L(2,3) inner-shell excitation spectra were obtained by electron energy-loss spectroscopy (EELS) for the divalent first transition series metals in phthalocyanine complexes (MPc) such as titanium oxide phthalocyanine (TiOPc), fluoro-chromium phthalocyanine (CrFPc), manganese phthalocyanine (MnPc), iron phthalocyanine (FePc), cobalt phthalocyanine (CoPc), nickel phthalocyanine (NiPc) and copper phthalocyanine (CuPc). It was found that the value of normalized total intensity of I(L2 + L3) was nearly proportional to the formal electron vacancies of each 3d-state, and the values of the branching ratio, I(L3)/I((L2 + L3), represented a high-spin-state rather than low-spin-state for MnPc, FePc and NiPc. EELS was also applied to charge-transfer complexes of FePc with an amine such as pyridine or gamma-picoline. It was concluded that their I(L2 + L3) intensity of Fe showed the decrease in vacancies of 3d-states on the formation of the charge-transfer complex with these amines, which suggests some electron transfer from the amine to Fe in phthalocyanine. The EELS study provides beneficial information for investigating the electronic states of the specific metal sites in organic materials.  相似文献   

3.
Valence EELS combined with STEM provides an approach to determine the dielectric constant of materials in the optical range of frequencies. The paper describes the experimental procedure and discusses the critical aspects of valence electron energy-loss spectroscopy (VEELS) treatment. In particular, the relativistic losses might affect strongly the results, and therefore they have to be subtracted from the spectra prior the analysis. The normalization of the energy-loss function is performed assuming an uniform thickness of the investigated area, which is reasonably fulfilled for carefully prepared FIB samples. This procedure requires the presence of at least one reference material with known dielectric properties to determine the absolute thickness. Examples of measuring the dielectric constant for several materials and structures are presented.  相似文献   

4.
This paper demonstrates the applicability of electron-spectroscopic imaging (ESI) for valence-state mapping of the iron oxide system. We have previously developed a set of signal-processing methods for an ESI series, to allow mapping of sp(2)/sp(3) ratio, dielectric function and energy bandgap. In this study, these methods are applied to generate a valence-state map of an iron oxide thin film (Fe/alpha-Fe(2)O(3)). Two problems, data undersampling and a convolution effect associated with extraction of the image-spectrum from the core loss image series, were overcome by using cubic-polynomial interpolation and maximum-entropy deconvolution. As a result, the reconstructed image-spectrum obtained from the ESI series images has a quality as good as that of conventional electron energy-loss spectra. The L(3)/L(2) ratio of the reconstructed ESI spectrum is determined to be 3.30+/-0.30 and 5.0+/-0.30 for Fe and alpha-Fe(2)O(3), respectively. Our L(3)/L(2) ratio mapping shows an accurate correspondence across the Cu/Fe/alpha-Fe(2)O(3) region. The effect of delocalization and chromatic aberration on the ESI resolution is discussed and estimated to be about 2 nm for the case of L(3)/L(2) ratio mapping.  相似文献   

5.
This paper presents a new technique using energy filtered TEM (EFTEM) for inelastic electron scattering contrast imaging of Germanium distribution in Si-SiGe nanostructures. Comparing electron energy loss spectra (EELS) obtained in both SiGe and Si single crystals, we found a spectrum area strongly sensitive to the presence of Ge in the range [50-100 eV]. In this energy loss window, EELS spectrum shows a smooth steeply shaped background strongly depending on Ge concentration. Germanium mapping inside SiGe can thus be performed through imaging of the EELS background slope variation, obtained by processing the ratio of two energy filtered TEM images, respectively, acquired at 90 and 60 eV. This technique gives contrasted images strongly similar to those obtained using STEM Z-contrast, but presenting some advantages: elastic interaction (diffraction) is eliminated, and contrast is insensitive to polycrystalline grains orientation or specimen thickness. Moreover, since the extracted signal is a spectral signature (inelastic energy loss) we demonstrate that it can be used for observation and quantification of Ge concentration depth profile of SiGe buried layers.  相似文献   

6.
Electron energy-loss Spectroscopy (EELS) at impact energies of 2.5–3 keV has been used to obtain the electron excitation spectra for the N 1s (K-shell), F 1s (K-shell) and valence shell regions of NF3. The inner shell spectra were recorded using small angle scattering (?1° ) while the valence shell spectrum was obtained at zero degree scattering angle. The inner shell excitation spectra show a strongly enhanced 1s→ δ* type transition and continuum features which are typical for molecules with highly electronegative ligands. One of the peaks in an earlier published photoabsorption study of the N 1s region has been shown to be due to a N2 impurity. The valence shell electron energy-loss spectrum shows a number of transitions which are considered to be mainly due to valence-valence type transitions, with also some evidence of Rydberg structure.The X-ray photoelectron spectra (XPS) of the N 1s and F 1s electrons along with their associated satellite structures have also been recorded using Al Kα (1486.58 eV) radiation. The vertical ionization potentials for the N 1s and F 1s electrons were found to be 414.36 (10) eV and 693.24 (10) eV, respectively. Both spectra exhibit a rich and different satellite structure. These “shake-up” features in the satellite XPS spectra are compared with continuum features of the inner shell electron energy-loss spectra and also with the valence shell spectrum.  相似文献   

7.
Electron energy loss spectroscopy (EELS) is a powerful technique for studying Li-ion battery materials because the valence state of the transition metal in the electrode and charge transfer during lithiation and delithiation processes can be analyzed by measuring the relative intensity of the transition metal L3 and L2 lines. In addition, the Li distribution in the electrode material can be mapped with nanometer scale resolution. Results obtained for FeO0.7F1.3/C nanocomposite positive electrodes are presented. The Fe average valence state as a function of lithiation (discharge) has been measured by EELS and results are compared with average Fe valence obtained from electrochemical data. For the FeO0.7F1.3/C electrode discharged to 1.5 V, phase decomposition is observed and valence mapping with sub-nanometer resolution was obtained by STEM/EELS analysis. For the lowest discharge voltage of 0.8 V, a surface electrolyte inter-phase (SEI) layer is observed and STEM/EELS results are compared with the Li-K edges obtained for various Li standard compounds (LiF, Li2CO3 and Li2O).  相似文献   

8.
Energy-loss near-edge structure (ELNES) data of Mn-L(2,3) and Fe-L(2,3) ionization edges have been measured by means of quantitative electron energy-loss spectroscopy (EELS) for two series of Mn and Fe oxides with known formal cation oxidation states. In both series the absolute energy positions of Mn-L(2,3) and Fe-L(2,3) white-lines, as well as the white-line intensity ratio (L3/L2) vary with cation oxidation states. Additionally, spin-orbit spitting, i.e. the energy difference deltaE(L2-L3) between Mn-L(2,3) white-lines decreases with increasing Mn oxidation state. With these data from known standards calibration curves on white-line intensity ratio Mn(L3/L2) vs. Mn oxidation state, and Fe(L3/L2) vs. Fe oxidation state were established. EELS measurements on Mn and Fe doped ZnO thin films showed that the valence states of the dopants can unambiguously be determined by calibrating the Mn-L(2,3) and Fe-L(2,3) ELNES data against the measured standards. It is revealed that Mn in ZnO adopt a divalent state, thus Mn2+ ions substitute for Zn2+, whereas Fe dopants retain a trivalent oxidation state in the ZnO host lattice. Measurements on (Ba, Fe, Mn)-oxides revealed that both Fe and Mn cations are in a trivalent state. Thus, it is assumed that Mn3+ can partially be substituted for Fe3+ in barium hexaferrites.  相似文献   

9.
Atomic resolution scanning transmission electron microscopy (STEM) analysis, in particular the combination of Z-contrast imaging and electron energy-loss spectroscopy (EELS) has been successfully used to measure the atomic and electronic structure of materials with sub-nanometer spatial resolution. Furthermore, the combination of this incoherent imaging technique with EELS allows us to correlate certain structural features, such as defects or interfaces directly with the measured changes in the local electronic fine-structure. In this review, we will discuss the experimental procedures for achieving high-resolution Z-contrast imaging and EELS. We will describe the alignment and experimental setup for high-resolution STEM analysis and also describe some of our recent results where the combined use of atomic-resolution Z-contrast imaging and column-by-column EELS has helped solve important materials science problems.  相似文献   

10.
Scanning photoemission microscopy (SPEM) has been applied to the investigation of homogeneous and heterogeneous metal sulfide mineral surfaces. Three mineral samples were investigated: homogeneous chalcopyrite, heterogeneous chalcopyrite with bornite, and heterogeneous chalcopyrite with pyrite. Sulfur, copper and iron SPEM images, i.e. surface‐selective elemental maps with high spatial resolution acquired using the signal from the S 2p and Cu and Fe 3p photoemission peaks, were obtained for the surfaces after exposure to different oxidation conditions (either exposed to air or oxidized in pH 9 solution), in addition to high‐resolution photoemission spectra from individual pixel areas of the images. Investigation of the homogeneous chalcopyrite sample allowed for the identification of step edges using the topography SPEM image, and high‐resolution S 2p spectra acquired from the different parts of the sample image revealed a similar rate of surface oxidation from solution exposure for both step edge and a nearby terrace site. SPEM was able to successfully distinguish between chalcopyrite and bornite on the heterogeneous sample containing both minerals, based upon sulfur imaging. The high‐resolution S 2p spectra acquired from the two regions highlighted the faster air oxidation of the bornite relative to the chalcopyrite. Differentiation between chalcopyrite and pyrite based upon contrast in SPEM images was not successful, owing to either the poor photoionization cross section of the Cu and Fe 3p electrons or issues with rough fracture of the composite surface. In spite of this, high‐resolution S 2p spectra from each mineral phase were successfully obtained using a step‐scan approach.  相似文献   

11.
Orbital populations of the minority-spin Fe(2+) electron in NdBaFe(2)O(5) are extracted from electric and magnetic hyperfine parameters of (57)Fe M?ssbauer spectra across the temperature interval where charge ordering of the valence state 2.5?+ of iron occurs. The previously used approach that assigns the minority-spin population to a single lowest-energy d orbital is expanded to three orbitals by setting up a system of equations in terms of the Fe(2+)/Fe(3+) balance from isomer shift, a point-charge model for the valence and ligand contributions to the electric-field gradient, a point-dipole model for the dipolar contribution and an iterative scheme for small orbital contributions to the internal magnetic field. This allows us to model the hyperfine fields (electric and magnetic) in the intermediate temperature range of partial charge ordering between T(V )?≈?210?K and T(p)?≈?285?K, for which the one-orbital model was insufficient.  相似文献   

12.
Spatially resolved electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) has been used to investigate a He fluidic phase in nanobubbles embedded in a metallic Pd(90)Pt(10) matrix. Using the 1s-->2p excitation of the He atoms, maps of the He density and pressure in bubbles of different diameters have been realized, to provide an indication of the bubble formation mechanism. Detailed local variations of the He K-line characteristics have been measured and interpreted as modifications of the electromagnetic properties of the He atom close to a metallic interface, which affects a correct estimation of the densities within the smallest bubbles.  相似文献   

13.
The presented scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) results show the strong reaction of Cr and V with the graphitic walls of MWCNTs. For Vanadium, an interfacial VC layer could be observed at the interface between VN and MWCNTs, when the samples were heated in situ to 750 °C. Knowledge about this interfacial VC layer is important for the formation of VN-MWCNT hybrid materials, used in supercapacitor electrodes, often synthesized at high temperatures. Chromium reacts at 500 °C with the MWCNTs to form Cr3C2 and in some cases, dissolved the MWCNT completely. Together with the previously published results about the interaction of MWCNTs with Cu (no interaction) and Ni (a slight rehybridisation trend for the outermost MWCNT-wall observed with EELS) (Ilari et al., 2015) the influence of the valence d-orbital occupancy of 3d transition metals on the interaction strength with CNTs is shown experimentally. For a transition metal to form chemical bonds towards CNT-walls, unoccupied states in its valence d-orbitals are needed. While Ni (2 unoccupied states) interacts only slightly, Cr (5 unoccupied states) and V (7 unoccupied states) react much stronger and can dissolve the MWCNTs, at least partially.  相似文献   

14.
Chemical shifts of the constituent atoms of primitive icosahedral quasicrystal (P-QC), face-centred icosahedral quasicrystal (F-QC) and 1/1-approximant (1/1-AP) of F-QC Zn–Mg–Zr alloys were investigated for the first time using high energy-resolution electron energy-loss spectroscopy (EELS) and soft-X-ray emission spectroscopy (SXES). Among Zn M-shell and Mg L-shell excitation EELS spectra of P-QC, F-QC and 1/1-AP alloys, only the quasicrystalline alloys showed a chemical shift towards the larger binding energy side. In Zn-L and Zr-L emission SXES spectra, the P-QC and F-QC alloys showed a chemical shift towards larger binding energy side. The magnitudes of the shifts in the Zn-L emission spectra of the quasicrystalline alloys were almost the same as for ZnO. These results strongly suggest a decrease in valence charge in quasicrystalline states. Therefore, it should be concluded that bonding in quasicrystalline states involves a characteristic increase in covalency compared with bonding in corresponding approximant and standard metal crystals.  相似文献   

15.
Body centered cubic (bcc) Fe nanoparticles were fabricated by in situ decomposition of iron fluoride films in a transmission electron microscope. Electron energy-loss near edge structure (ELNES) was used to characterize this exposure process. In particular, the L(3)/L(2) white-line intensity ratio (WLR) was used to monitor the iron valence state during exposure, and as an indicator of other properties of the iron nanoparticles. Iron nanoparticles with sizes between 2 and 20nm exhibit a constant WLR, whose value is same as that for a continuous bcc iron film, suggesting little or no dependence of the local magnetic moment or structure on the particle size. A broad but prominent peak which occurs 40eV after the L(3)-ionization threshold in the iron fluoride, is absent for a metallic iron film but reappears when the iron is converted to an oxide. Long-range ferromagnetic coupling was observed in samples densely populated with iron nanoparticles. Because there is little interaction between particles and the supporting carbon substrate, these samples provide an ideal model system for studying the influence of particle size and interparticle distance on magnetic properties.  相似文献   

16.
The low loss region of an EEL spectrum (<50 eV) contains information about excitations of outer shell electrons and thus the electronic structure of a specimen which determines its optical properties. In this work, dedicated electron energy loss spectroscopy (EELS) methods for the experimental acquisition and analysis of spectra are described, which give improved information about the electronic structure near the bandgap region at a spatial resolution in the range of nanometers. For this purpose, we made use of a cold field emission scanning transmission electron microscope (STEM) equipped with a dedicated EELS system. This device provides a subnanometer electron probe and offers an energy resolution of 0.35 eV. Application of suitable deconvolution routines for removal of the zero loss peak extracts information on the bandgap region while the Kramers-Kronig transformation deduces the dielectric properties from the measured energy loss function. These methods have been applied to characterize the optical properties of wide-bandgap materials for the case of III-nitride compounds, which are currently the most promising material for applications on optoelectronic devices working in the blue and ultraviolet spectral range. The obtained results are in excellent agreement with experimental measurements by synchrotron ellipsometry and theoretical studies. The potential of the superior spatial resolution of EELS in a STEM is demonstrated by the analysis of dielectric properties of individual layers of heterostructures and individual defects within wurtzite GaN.  相似文献   

17.
The structure of K-doped fullerene peapods has been investigated by means of high-resolution transmission electron microscopy and electron energy-loss spectroscopy (EELS). It is proven that the potassium atoms can be doped at the intermolecular sites within C60 peapods. The EELS spectrum of potassium (K) L edge clearly exhibits the feature of K+ in the doped peapod and consequently suggests n-type doping. These results encourage the realization of a one-dimensional superconducting wire based on the nanotube peapods.  相似文献   

18.
Experimental confirmation for the stronger interaction of Ni with multi-walled carbon nanotubes (MWCNTs) compared to Cu with MWCNTs is presented. The interfaces between Cu (Ni) nanoparticles side-on oriented onto MWCNTs are analyzed with high spatial resolution electron energy-loss spectroscopy (EELS) of the carbon K-edge. The EEL spectra reveal a rehybridization from sp2 to sp3 hybridized carbon of the outermost MWCNT layer at the Ni interface, but no such rehybridization can be observed at the Cu interface. The EELS results are supported by transmission electron microscopy (TEM) images, which show a better wetting behavior of Ni and a smaller gap at the Ni–MWCNT interface, as compared to the corresponding Cu interfaces. The different behavior of Cu and Ni can be explained in terms of differing valence d-orbital occupancy. For the successful experimental demonstration of this effect the use of a soft chemical metal deposition technique is crucial.  相似文献   

19.
The properties of transition metal oxides are related to the presence of elements with mixed valences. The spectroscopy analysis of the valence states is feasible experimentally, but a spatial mapping of valence states of transition metal elements is a challenge to existing microscopy techniques. In this paper, with the use of valence state information provided by the white lines and near-edge fine structures observed using the electron energy-loss spectroscopy (EELS) in a transmission electron microscope (TEM), a novel experimental approach is demonstrated to map the valence state distributions of Mn and Co using the ratio of white lines in the energy-filtered TEM. The valence state map is almost independent of specimen thickness in the thickness range adequate for quantitative EELS microanalysis. An optimum spatial resolution of approximately 2 nm has been achieved for a two-phase Co oxides.  相似文献   

20.
黄土覆盖区油气微渗漏地表蚀变高光谱特征响应机理研究   总被引:3,自引:0,他引:3  
以甘肃庆阳油气区为例,根据油气微渗漏的物理化学过程,通过地面实测黄土样品的波谱曲线,以及其中碳酸盐、粘土矿物、二、三价铁离子含量的测试分析,检测黄土覆盖区油气微渗漏所引起的特征光谱响应。根据黄土样品的测试分析,已知油气区碳酸盐矿物含量明显高于未知油气区,而且二价铁离子含量增加引起红层褪色现象明显,但粘土化蚀变特征不明显。从实测土壤光谱曲线包络线去除后,提取的土壤光谱吸收特征参数中,碳酸根和二价铁离子对应的吸收深度、吸收面积和对称度等三个特征参数与其含量相关性强,拟合度好。由此,对地面实测的14条土壤光谱曲线聚类分析能够有效区分油气微渗漏明显的已知油气区类和油气微渗漏不明显的未知油气区类。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号