首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A new family of tetranuclear Mn complexes [Mn4X4L4] (H2L = salicylidene-2-ethanolamine; X = Cl (1) or Br (2)) and [Mn4Cl4(L')4] (H2L' = 4-tert-butyl-salicylidene-2-ethanolamine, (3)) has been synthesized and studied. Complexes 1-3 possess a square-shaped core with ferromagnetic exchange interactions between the four Mn(III) centers resulting in an S = 8 spin ground state. Magnetochemical studies and high-frequency EPR spectroscopy reveal an axial magnetoanisotropy with D values in the range -0.10 to -0.20 cm(-1) for complexes 2 and 3 and for differently solvated forms of 1. As a result, these species possess an anisotropy-induced energy barrier to magnetization reversal and display slow relaxation of the magnetization, which is observed as hysteresis for 1 and 3 and frequency-dependent peaks in out-of-phase AC susceptibility measurements for 3. The effective energy barrier was determined to be 7.7 and 7.9 K for 1 and 3, respectively, and evidence for quantum tunneling of the magnetization was observed. Detailed magnetochemical studies, including measurements at ultralow temperatures, have revealed that complexes 1 and 2 possess solvation-dependent antiferromagnetic intermolecular interactions. Complex 3 displays ferromagnetic intermolecular interactions and approaches a ferromagnetic phase transition with a critical temperature of approximately 1 K, which is coincident with the onset of slow relaxation of the magnetization due to the molecular anisotropy barrier to magnetization reversal. It was found that the intermolecular interactions have a significant effect on the manifestation of slow relaxation of the magnetization, and thereby, these complexes represent a new family of "exchange-biased single-molecule magnets", where the exchange bias is controlled by chemical and structural modifications.  相似文献   

2.
Aoki C  Ishida T  Nogami T 《Inorganic chemistry》2003,42(23):7616-7625
A new chelating radical ligand 4ImNNH (2-(4-imidazolyl)-4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide) was prepared, and complexation with divalent transition metal salts gave complexes, [M(4ImNNH)(2)X(2)], which showed intermolecular ferromagnetic interaction in high probability (7 out of 10 paramagnetic compounds investigated here). The nitrate complexes (X = NO(3); M = Mn (1), Co (2), Ni (3), Cu (4)) crystallize isomorphously in monoclinic space group P2(1)/a. The equatorial positions are occupied with two 4ImNNH chelates and the nitrate oxygen atoms are located at the axial positions. Magnetic measurements revealed that the intramolecular exchange couplings in 1, 2, and 4 were antiferromagnetic, while that in 3 was ferromagnetic with 2J/k(B) = +85 K, where the spin Hamiltonian is defined as H = -2J(S(1).S(2) + S(2).S(3)) based on the molecular structures determined as the linear radical-metal-radical triads. The intramolecular ferromagnetic interaction in 3 is interpreted in terms of orthogonality between the radical pi and metal dsigma orbitals. Compounds 1-3 exhibited intermolecular ferromagnetic interaction ascribable to a two-dimensional hydrogen bond network parallel to the crystallographic ab plane. Complex 3 became an antiferromagnet below 3.4 K and exhibited a metamagnetic transition on applying a magnetic field of 5.5 kOe at 1.8 K. The complexes prepared from metal halides, [M(4ImNNH)(2)X(2)] (X = Cl, Br; M = Mn, Co, Ni, Cu), showed intramolecular antiferromagnetic interactions, which are successfully analyzed based on the radical-metal-radical system. The crystal structures determined here on 1-4, [Mn(4ImNNH)(2)Cl(2)], and [Cu(4ImNNH)(2)Br(2)] always have intermolecular hydrogen bonds of H(imidazole).X(axial ligand)-M, where X = NO(3), Cl, Br. This interaction seems to play an important role in molecular packing and presumably also in magnetic coupling.  相似文献   

3.
Heterometallic linear tetramers [Mn(5-R-saltmen)Ni(pao)(bpy)(2)](2)(ClO(4))(4) (5-R-saltmen(2-) = N,N'-1,1,2,2-tetramethylethylene bis(5-R-salicylideneiminate); pao(-) = pyridine-2-aldoximate; bpy = 2,2'-bipyridine, R = H, 1; Cl, 2; Br, 3; MeO, 4) have been synthesized and structurally characterized. These compounds exhibit a [Ni(II)-NO-Mn(III)-(O)(2)-Mn(III)-ON-Ni(II)] skeleton where -ON- is an oximate bridge between Mn(III) and Ni(II) ions and -(O)(2)- is a bi-phenolate bridge between Mn(III) ions. These tetramers can be seen as oligomeric units of the heterometallic Mn(III)(2)-Ni(II) chain observed in a family of single-chain magnets (Clérac, R.; Miyasaka, H.; Yamashita, M.; Coulon, C. J. Am. Chem. Soc. 2002, 124, 12837. Miyasaka, H.; Clérac, R.; Mizushima, K.; Sugiura, K.; Yamashita, M.; Wernsdorfer, W.; Coulon, C. Inorg. Chem. 2003, 42, 8203.). Magnetic measurements on these tetramers confirm the nature of the magnetic interactions reported for the Mn(III)(2)-Ni(II) chains: a strong antiferromagnetic Mn(III)/Ni(II) coupling via the oximate bridge (J(Ni-Mn) ranges from -23.7 to -26.1 K) and a weak ferromagnetic Mn(III)/Mn(III) coupling through the bi-phenolate bridge (J(Mn-Mn) ranges from +0.4 to +0.9 K). These magnetic interactions lead to tetramers with an S = 2 ground state.  相似文献   

4.
Mn(III)-Ni(II)-Mn(III) linear-type trinuclear complexes bridged by oximate groups were selectively synthesized by the assembly reaction of [Mn2(5-Rsaltmen)2(H2O)2](ClO4)2 (5-Rsaltmen2-=N,N'-(1,1,2,2-tetramethylethylene) bis(5-R-salicylideneiminate); R=Cl, Br) with [Ni(pao)2(phen)] (pao-=pyridine-2-aldoximate; phen=1,10-phenanthroline) in methanol/water: [Mn2(5-Rsaltmen)2Ni(pao)2(phen)](ClO4)2 (R=Cl, 1; R=Br, 2). Structural analysis revealed that the [Mn(III)-ON-Ni(II)-NO-Mn(III)] skeleton of these trimers is in every respect similar to the repeating unit found in the previously reported series of 1D materials [Mn2(saltmen)2Ni(pao)2(L1)2](A)(2) (L(1)=pyridine, 4-picoline, 4-tert-butylpyridine, N-methylimidazole; A=ClO4-, BF4-, PF6-, ReO4-). Recently, these 1D compounds have attracted a great deal of attention for their magnetic properties, since they exhibit slow relaxation of the magnetization (also called single-chain magnet (SCM) behavior). This unique magnetic behavior was explained in the framework of Glauber's theory, generalized for chains of ferromagnetically coupled anisotropic spins. Thus, in these 1D compounds, the [Mn(III)-ON-Ni(II)-NO-Mn(III)] unit was considered as an S(T)=3 anisotropic spin. Direct-current magnetic measurements on 1 and 2 confirm their S(T)=3 ground state and strong uniaxial anisotropy (D/k(B) approximately -2.4 K), in excellent agreement with the magnetic characteristic deduced in the study on the SCM series. The ac magnetic susceptibility of these trimers is strongly frequency-dependent and characteristic of single-molecule magnet (SMM) behavior. The relaxation time tau shows a thermally activated (Arrhenius) behavior with tau0 approximately 1x10(-7) s and Delta(eff)/k(B) approximately 18 K. The effective energy barrier for reversal of the magnetization Delta(eff) is consistent with the theoretical value (21 K) estimated from |D| S2T. The present results reinforce consistently the interpretation of the SCM behavior observed in the [Mn2(saltmen)2Ni(pao)2(L1)2](A)2 series and opens new perspectives to design single-chain magnets.  相似文献   

5.
The combined use of the anion of phenyl(2-pyridyl)ketone oxime (ppko(-)) and azides (N(3)(-)) in nickel(II) carboxylate chemistry has afforded two new Ni(II)(5) clusters, [Ni(5)(O(2)CR')(2)(N(3))(4)(ppko)(4)(MeOH)(4)] [R' = H (1), Me (2)]. The structurally unprecedented {Ni(5)(μ-N(3))(2)(μ(3)-N(3))(2)}(6+) cores of the two clusters are almost identical and contain the five Ni(II) atoms in a bowtie topology. Two N(3)(-) ions are end-on doubly bridging and the other two ions end-on triply bridging. The end-on μ(3)-N(3)(-) groups link the central Ni(II) atoms with the two peripheral metal ions on either side of the molecule, while the Ni···Ni bases of the triangles are each bridged by one end-on μ-N(3)(-) group. Variable-temperature, solid-state direct- (dc) and alternating-current (ac) magnetic susceptibility, and magnetization studies at 2.0 K were carried out on both complexes. The data indicate an overall ferromagnetic behavior and an S = 5 ground state for both compounds. The ac susceptibility studies on 1 reveal nonzero, frequency-dependent out-of-phase (χ(M)") signals at temperatures below ~3.5 K; complex 2 reveals no χ(M)" signals. However, single-crystal magnetization versus dc field scans at variable temperatures and variable sweep rates down to 0.04 K on 1 reveal no noticeable hysteresis loops, except very minor ones at 0.04 K assignable to weak intermolecular interactions propagated by nonclassical hydrogen bonds.  相似文献   

6.
The syntheses, crystal structures, and magnetic properties of [Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (2), (NMe(4))[Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (3), and (NMe(4))(2)[Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (4) are reported. Complex 2 displays quasi-reversible redox couples when examined by cyclic voltammetry in CH(2)Cl(2): one-electron reductions are observed at 0.64 and 0.30 V vs ferrocene. The reaction of complex 2 with 1 and 2 equiv of NMe(4)I yields the one- and two-electron reduced analogues, 3 and 4, respectively. Complexes 2.3CH(2)Cl(2), 3.4.5CH(2)Cl(2).(1)/(2)H(2)O, and 4.6C(7)H(8) crystallize in the triclinic P, monoclinic P2/c, and monoclinic C2/c space groups, respectively. The molecular structures are all very similar, consisting of a central [Mn(IV)O(4)] cubane surrounded by a nonplanar alternating ring of eight Mn and eight mu(3)-O(2)(-) ions. Peripheral ligation is provided by 16 bridging C(6)F(5)CO(2)(-) and 4 H(2)O ligands. Bond valence sum calculations establish that the added electrons in 3 and 4 are localized on former Mn(III) ions giving trapped-valence Mn(IV)(4)Mn(III)(7)Mn(II) and Mn(IV)(4)Mn(III)(6)Mn(II)(2) anions, respectively. (19)F NMR spectroscopy in CD(2)Cl(2) shows retention of the solid-state structure upon dissolution and detrapping of the added electrons in 3 and 4 among the outer ring of Mn ions on the (19)F NMR time scale. DC studies on dried microcrystalline samples of 2, 3, and 4.2.5C(7)H(8) restrained in eicosane in the 1.80-10.0 K and 1-70 kG ranges were fit to give S = 10, D = -0.40 cm(-)(1), g = 1.87, D/g = 0.21 cm(-)(1) for 2, S = 19/2, D = -0.34 cm(-)(1), g = 2.04, D/g = 0.17 cm(-)(1) for 3, and S = 10, D = -0.29 cm(-)(1), g = 2.05, D/g = 0.14 cm(-)(1) for 4, where D is the axial zero-field splitting parameter. The clusters exhibit out-of-phase AC susceptibility signals (chi(M)' ') indicative of slow magnetization relaxation in the 6-8 K range for 2, 4-6 K range for 3, and 2-4 K range for 4; the shift to lower temperatures reflects the decreasing magnetic anisotropy upon successive reduction and, hence, the decreasing energy barrier to magnetization relaxation. Relaxation rate vs T data obtained from chi(M)' ' vs AC oscillation frequency studies down to 1.8 K were combined with rate vs T data from DC magnetization decay vs time measurements at lower temperatures to generate an Arrhenius plot from which the effective barrier (U(eff)) to magnetization reversal was obtained; the U(eff) values are 59 K for 2, 49 and 21 K for the slower- and faster-relaxing species of 3, respectively, and 25 K for 4. Hysteresis loops obtained from single-crystal magnetization vs DC field scans are typical of single-molecule magnets with the coercivities increasing with decreasing T and increasing field sweep rate and containing steps caused by the quantum tunneling of magnetization (QTM). The step separations gave D/g values of 0.22 cm(-)(1) for 2, 0.15 and 0.042 cm(-)(1) for the slower- and faster-relaxing species of 3, and 0.15 cm(-)(1) for 4.  相似文献   

7.
Ni-catalyzed cross-coupling of unactivated secondary alkyl halides with alkylboranes provides an efficient way to construct alkyl-alkyl bonds. The mechanism of this reaction with the Ni/L1 (L1=trans-N,N'-dimethyl-1,2-cyclohexanediamine) system was examined for the first time by using theoretical calculations. The feasible mechanism was found to involve a Ni(I)-Ni(III) catalytic cycle with three main steps: transmetalation of [Ni(I)(L1)X] (X=Cl, Br) with 9-borabicyclo[3.3.1]nonane (9-BBN)R(1) to produce [Ni(I)(L1)(R(1))], oxidative addition of R(2) X with [Ni(I)(L1)(R(1))] to produce [Ni(III)(L1)(R(1))(R(2))X] through a radical pathway, and C-C reductive elimination to generate the product and [Ni(I)(L1)X]. The transmetalation step is rate-determining for both primary and secondary alkyl bromides. KOiBu decreases the activation barrier of the transmetalation step by forming a potassium alkyl boronate salt with alkyl borane. Tertiary alkyl halides are not reactive because the activation barrier of reductive elimination is too high (+34.7 kcal mol(-1)). On the other hand, the cross-coupling of alkyl chlorides can be catalyzed by Ni/L2 (L2=trans-N,N'-dimethyl-1,2-diphenylethane-1,2-diamine) because the activation barrier of transmetalation with L2 is lower than that with L1. Importantly, the Ni(0)-Ni(II) catalytic cycle is not favored in the present systems because reductive elimination from both singlet and triplet [Ni(II)(L1)(R(1))(R(2))] is very difficult.  相似文献   

8.
The syntheses, structures, and magnetic properties of two new Mn7 complexes containing phenylseleninate ligands are reported. [Mn7O8(O2SePh)8(O2CMe)(H2O)] (1) and [Mn7O8(O2SePh)9(H2O)] (2) were both prepared by the reaction of 18 equiv of benzeneseleninic acid (PhSeO2H) with [Mn12O12(O2CMe)16(H2O)4] in MeCN. Complex 1 x 6MeCN crystallizes in the triclinic space group P, and complex 2 x 2CH2Cl2 crystallizes in the monoclinic space group P2(1)/m. Both compounds possess an unprecedented [Mn7O8]9+ core comprising a central [MnIII3(micro3-O)4]+ unit attached to [MnIV2(micro-O)2]4+ and [MnIV2(micro-O)(micro3-O)]4+ units on either side. In each cluster, the PhSeO2- groups function as bridging ligands between adjacent Mn centers. The structure reveals strong Se.O intermolecular contacts between Mn7 units to give a one-dimensional chain structure, with weak interchain interactions. Solid-state DC magnetic susceptibility measurements of complexes 1 and 2 reveal that they have very similar properties, and detailed studies on 1 by AC susceptibility measurements confirm an S = 2 ground-state spin value. In addition, out-of-phase AC signals are observed, suggesting slow magnetization relaxation. Magnetization versus DC field sweeps down to 0.04 K reveals hysteresis loops, but the temperature dependence of the coercivity is not what is expected of a single-molecule magnet. Instead, the behavior is due to single-chain magnetism, albeit with weak antiferromagnetic interactions between the chains, with the barrier to relaxation arising from a combination of molecular anisotropy and ferromagnetic intermolecular exchange interactions mediated by the Se...O contacts. An Arrhenius plot was constructed from the magnetization versus time decay data. The thermally activated region at > 0.5 K gave an effective relaxation barrier (Ueff) of 14.2 K. Below approximately 0.1 K, the relaxation is independent of temperature, which is characteristic of magnetization quantum tunneling through the anisotropy barrier. These Mn7 compounds are thus the first single-chain magnets to comprise polynuclear metal clusters and also the first for which the temperature-independent relaxation characteristic of tunneling has been identified. The work also emphasizes that out-of-phase AC signals for ostensibly molecular compounds are not sufficient proof by themselves of a single-molecule magnet.  相似文献   

9.
Jiang L  Feng XL  Lu TB  Gao S 《Inorganic chemistry》2006,45(13):5018-5026
The preparation and crystal structures of five cyano-bridged Fe-Mn complexes, [(bipy)2Fe(II)(CN)2Mn(II)(bipy)2]2(ClO4)4 (1), [(bipy)2Fe(II)(CN)2Mn(II)(DMF)3(H2O)]2(ClO4)4 (2), {[(Tp)Fe(III)(CN)3]2Mn(II)(DMF)2(H2O)}2 (3), {[(Tp)Fe(III)(CN)3]2Mn(II)(DMF)2}n (4), and Na2[Mn(II)Fe(II)(CN)6] (5) (bipy = 2,2'-bipyridine, Tp = tris(pyrazolyl)hydroborate), are reported here. Compounds 1-4 contain the basic Fe2(CN)4Mn2 square building units, of which 1-3 show the motif of discrete molecular squares of Fe2(CN)4Mn2 and 4 possesses a 1D double-zigzag chain-like structure, while compound 5 is a 3D cubic framework analogous to that of Prussian blue. Compounds 1 and 2 show weak ferromagnetic interactions between two Mn(II) ions through the bent -NC-Fe(II)-CN- bridges. Compound 3 shows weak antiferromagnetic coupling between the Fe(III) and Mn(II) ions, while compound 4 displays a metamagnetic-like behavior with TN = 5.2 K and Hc = 10.5 kOe. Compound 5 exhibits a ferromagnetic ordering with Tc= 3.5 K, coercive field, Hc, = 330 G, and a remnant magnetization of 503 cm3 Oe mol(-1).  相似文献   

10.
The synthesis and magnetic properties are reported of two new clusters [Mn(10)O(4)(OH)(2)(O(2)CMe)(8)(hmp)(8)](ClO(4))(4) (1) and [Mn(7)(OH)(3)(hmp)(9)Cl(3)](Cl)(ClO(4)) (2). Complex 1 was prepared by treatment of [Mn(3)O(O(2)CMe)(6)(py)(3)](ClO(4)) with 2-(hydroxymethyl)pyridine (hmpH) in CH(2)Cl(2), whereas 2 was obtained from the reaction of MnCl(2).4H(2)O, hmpH, and NBu(n)(4)MnO(4) in MeCN followed by recrystallization in the presence of NBu(n)(4)ClO(4). Complex 1.2py.10CH(2)Cl(2).2H(2)O crystallizes in the triclinic space group P1. The cation consists of 10 Mn(III) ions, 8 mu(3)-O(2)(-) ions, 2 mu(3)-OH(-) ions, 8 bridging acetates, and 8 bridging and chelating hmp(-) ligands. The hmp(-) ligands bridge through their O atoms in two ways: two with mu(3)-O atoms and six with mu(2)-O atoms. Complex 2.3CH(2)Cl(2).H(2)O crystallizes in the triclinic space group P1. The cation consists of four Mn(II) and three Mn(III) ions, arranged as a Mn(6) hexagon of alternating Mn(II) and Mn(III) ions surrounding a central Mn(II) ion. The remaining ligation is by three mu(3)-OH(-) ions, three terminal chloride ions, and nine bridging and chelating hmp(-) ligands. Six hmp(-) ligands contain mu(2)-O atoms and three contain mu(3)-O atoms. The Cl(-) anion is hydrogen-bonded to the three mu(3)-OH(-) ions. Variable-temperature direct current (dc) magnetic susceptibility data were collected for complex 1 in the 5.00-300 K range in a 5 kG applied field. The chi(M)T value gradually decreases from 17.87 cm(3) mol(-1) K at 300 K to 1.14 cm(3) mol(-1) K at 5.00 K, indicating an S = 0 ground state. The ground-state spin of complex 2 was established by magnetization measurements in the 0.5-3.0 T and 1.80-4.00 K ranges. Fitting of the data by matrix diagonalization, incorporating only axial anisotropy (DS(z)(2)), gave equally good fits with S = 10, g = 2.13, D = -0.14 cm(-1) and S = 11, g = 1.94, D = -0.11 cm(-1). Magnetization versus dc field scans down to 0.04 K reveal no hysteresis attributable to single-molecule magnetism behavior, only weak intermolecular interactions.  相似文献   

11.
Mn(II), Co(II) and Ni(II) complexes of 2-methylcyclohexanone thiosemicarbazone(MCHTSC L(1)) and 2-methylcyclohexanone-(4)N-methyl-3-thiosemicarbazone (MCHMTSC L(2)), general composition [M(L)(2)X(2)] (where M = Mn(II), Co(II), Ni(II), L = L(1) or L(2) and X = Cl(-), NO(3)(-), and [(1/2)SO(4)(2-)) have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, UV-vis, IR, EPR, and mass spectral studies. Various physico-chemical techniques suggest an octahedral geometry for all the complexes.  相似文献   

12.
Chen H  Ma CB  Yuan DQ  Hu MQ  Wen HM  Liu QT  Chen CN 《Inorganic chemistry》2011,50(20):10342-10352
A family of Mn(III)/Ni(II) heterometallic clusters, [Mn(III)(4)Ni(II)(5)(OH)(4)(hmcH)(4)(pao)(8)Cl(2)]·5DMF (1·5DMF), [Mn(III)(3)Ni(II)(6)(N(3))(2)(pao)(10)(hmcH)(2)(OH)(4)]Br·2MeOH·9H(2)O (2·2MeOH·9H(2)O), [Mn(III)Ni(II)(5)(N(3))(4)(pao)(6)(paoH)(2)(OH)(2)](ClO(4))·MeOH·3H(2)O (3·MeOH·3H(2)O), and [Mn(III)(2)Ni(II)(2)(hmcH)(2)(pao)(4)(OMe)(2)(MeOH)(2)]·2H(2)O·6MeOH (4·2H(2)O·6MeOH) [paoH = pyridine-2-aldoxime, hmcH(3) = 2, 6-Bis(hydroxymethyl)-p-cresol], has been prepared by reactions of Mn(II) salts with [Ni(paoH)(2)Cl(2)], hmcH(3), and NEt(3) in the presence or absence of NaN(3) and characterized. Complex 1 has a Mn(III)(4)Ni(II)(5) topology which can be described as two corner-sharing [Mn(2)Ni(2)O(2)] butterfly units bridged to an outer Mn atom and a Ni atom through alkoxide groups. Complex 2 has a Mn(III)(3)Ni(II)(6) topology that is similar to that of 1 but with two corner-sharing [Mn(2)Ni(2)O(2)] units of 1 replaced with [Mn(3)NiO(2)] and [MnNi(3)O(2)] units as well as the outer Mn atom of 1 substituted by a Ni atom. 1 and 2 represent the largest 3d heterometal/oxime clusters and the biggest Mn(III)Ni(II) clusters discovered to date. Complex 3 possesses a [MnNi(5)(μ-N(3))(2)(μ-OH)(2)](9+) core, whose topology is observed for the first time in a discrete molecule. Careful examination of the structures of 1-3 indicates that the Mn/Ni ratios of the complexes are likely associated with the presence of the different coligands hmcH(2-) and/or N(3)(-). Complex 4 has a Mn(III)(2)Ni(II)(2) defective double-cubane topology. Variable-temperature, solid-state dc and ac magnetization studies were carried out on complexes 1-4. Fitting of the obtained M/(Nμ(B)) vs H/T data gave S = 5, g = 1.94, and D = -0.38 cm(-1) for 1 and S = 3, g = 2.05, and D = -0.86 cm(-1) for 3. The ground state for 2 was determined from ac data, which indicated an S = 5 ground state. For 4, the pairwise exchange interactions were determined by fitting the susceptibility data vs T based on a 3-J model. Complex 1 exhibits out-of-phase ac susceptibility signals, indicating it may be a SMM.  相似文献   

13.
14.
Three novel coordination polymers with azide and a bifunctional zwitterionic ligand bearing carboxylate and tetrazolate as bridging groups, [M(L)(N(3))]·xH(2)O [L=1-(carboxylatomethyl)-4-(5-tetrazolato)pyridinium, M=Cu (1, x=2), Ni (2, x=1), and Co (3, x=1)], have been synthesized and characterized by X-ray crystallography and magnetic measurements. The compounds consist of two-dimensional coordination layers in which uniform anionic chains with the unprecedented tricomponent (μ-azide)(μ-tetrazolate)(μ-carboxylate) bridges are cross-linked by cationic 1-methylenepyridinium spacers. The tricomponent bridges induce ferromagnetic interactions in all the compounds. Furthermore, this isostructural series of ferromagnetic-chain-based compounds has allowed us to observe distinct bulk properties that are dependent upon the natures of the different spin carriers: with the isotropic Cu(II) ion, 1 exhibits a paramagnetic phase of the ferromagnetic chains without long-range magnetic order above 2 K; with the weakly anisotropic Ni(II) ions, 2 displays antiferromagnetic ordering and field-induced metamagnetism without slow dynamic relaxation; and with Co(II), which has strong magnetic anisotropy due to first-order spin-orbital coupling, 3 exhibits magnetic hysteresis and slow magnetization dynamics typical of single-chain magnets.  相似文献   

15.
The reaction of manganese(III) Schiff bases of the type salen(2-) (N,N'-ethylenebis(salicylideneaminato)) with X-substituted (X = CH(3), Cl) pyridinecarboxamide dicyanoferrite(III) [Fe(X-bpb)(CN)(2)](-) gave rise to a series of cyanide-bridged Mn(6)Fe(6) molecular wheels, [Mn(III)(salen)](6)[Fe(III)(bpmb)(CN)(2)](6) x 7H(2)O (1), [Mn(salen)](6)[Fe(bpClb)(CN)(2)](6) x 4H(2)O x 2CH(3)OH (2), [Mn(salen)](6)[Fe(bpdmb)(CN)(2)](6) x 10H(2)O x 5CH(3)OH (3), [Mn(5-Br(salpn))](6)[Fe(bpmb)(CN)(2)](6) x 24H(2)O x 8CH(3)CN (4), and [Mn(5-Cl(salpn))](6)[Fe(bpmb)(CN)(2)](6) x 25H(2)O x 5CH(3)CN (5). Compared with [Fe(bpb)(CN)(2)](-), which always gives rise to 1D or polynuclear species when reacting with Mn(III) Schiff bases, the introduction of substituents (X) to the bpb(2-) ligand has a driving force in formation of the novel wheel structure. Magnetic studies reveal that high-spin ground state S = 15 is present in the wheel compounds originated from the ferromagnetic Mn(III)-Fe(III) coupling. For the first time, the quantum Monte Carlo study has been used to modulate the magnetic susceptibility of the huge Mn(6)Fe(6) metallomacrocycles, showing that the magnetic coupling constants J range from 3.0 to 8.0 K on the basis of the spin Hamiltonian [Formula: see text]. Hysteresis loops for 1 have been observed below 0.8 K, indicative of a single-molecule magnet with a blocking temperature (TB) of 0.8 K. Molecular wheels 2-5 exhibit frequency dependence of alternating-current magnetic susceptibility under zero direct-current magnetic field, signifying the slow magnetization relaxation similar to that of 1. Significantly, an unprecedented archlike Mn(2)Fe(2) cluster, [Mn(5-Cl(salpn))](2)[Fe(bpmb)(CN)(2)](2) x 3H(2)O x CH(3)CN (6), has been isolated as an intermediate of the Mn(6)Fe(6) wheel 5. Ferromagnetic Mn(III)-Fe(III) coupling results in a high-spin S = 5 ground state. Combination of the high-spin state and a negative magnetic anisotropy (D) results in the observation of slow magnetization relaxation in 6.  相似文献   

16.
Two new heterometallic cubane molecules have been synthesized. High-frequency electron paramagnetic resonance and magnetization measurements indicate that [Mn(3)Ni(hmp)(3)O(N(3))(3)(C(7)H(5)O(2))(3)] (1) displays a well-isolated S = 5 ground state (DeltaE > 120 K), with g = 2.0, D = -0.23 cm(-1), and ferromagnetic Mn-Mn exchange interactions competing with antiferromagnetic Ni-Mn interactions. [Mn(3)Zn(hmp)(3)O(N(3))(3)(C(3)H(5)O(2))(3)] (2) possesses a S = 6 ground state (DeltaE > 105 K), with g = 2.0, D = -0.14 cm(-1), and ferromagnetic Mn-Mn exchange interactions. Magnetization vs magnetic field data for oriented single crystals of 1 and 2 indicate that both complexes are single-molecule magnets.  相似文献   

17.
The synthesis, X-ray crystallography, magnetic properties, and high-field electron paramagnetic resonance (HFEPR) of a new heptanuclear manganese complex [Mn(7)(heamp)(6)](ClO(4))(2)·4CH(2)Cl(2)·H(2)O (complex 2), in which heampH(3) is 2-[N,N-di(2-hydroxyethyl)aminomethyl]phenol (compound 1), is reported. Complex 2 has a hexagonal, disk-shaped topology and contains six Mn(III) ions and a central Mn(II) ion. It crystallizes in the monoclinic space group P2(1)/c with two molecular orientations. Consideration of the cluster topology, together with variable-temperature and variable-field DC magnetic susceptibility data, suggest that complex 2 exists in a half-integer, S = (19)/(2) ± 1 spin ground state, with appreciable uniaxial zero-field splitting (D = -0.16 cm(-1)). AC magnetic susceptibility measurements clearly show out-of-phase signals, which are frequency- and temperature-dependent, indicating slow magnetization relaxation behavior. An analysis of the relaxation data employing the Arrhenius formula yielded an effective relaxation barrier of 12.9 cm(-1). Simulations of HFEPR studies agree with the assignment of an S ≈ (19)/(2) spin ground state, with g = 1.96, D = -4.71 GHz (-0.16 cm(-1)), and a longitudinal fourth-order zero-field splitting parameter B(4)(0) = -2.7 × 10(-4) GHz (-9.0 × 10(-6) cm(-1)).  相似文献   

18.
The cyano-bridged trinuclear compound, (NEt(4))[Mn(2)(salmen)(2)(MeOH)(2)Fe(CN)(6)] (1) (salmen(2)(-) = rac-N,N'-(1-methylethylene)bis(salicylideneiminate)), reported previously by Miyasaka et al. (ref 19d) has been reinvestigated using combined ac and dc susceptibility measurements. The strong frequency dependence of the ac susceptibility and the slow relaxation of the magnetization show that 1 behaves as a single-molecule magnet with an S(T) = (9)/(2) spin ground state. Its relaxation time (tau) follows an Arrhenius law with tau(0) = 2.5 x 10(-)(7) s and Delta(eff)/k(B) = 14 K. Moreover, below 0.3 K, tau saturates around 470 s, indicating that quantum tunneling of the magnetization becomes the dominant process of relaxation. (NEt(4))[Mn(2) (5-MeOsalen)(2)Fe(CN)(6)] (2) (5-MeOsalen(2)(-) = N,N'-ethylenebis(5-methoxysalicylideneiminate)) is a heterometallic one-dimensional assembly made of the trinuclear [Mn(III)(SB)-NC-Fe(III)-CN-Mn(III)(SB)] (SB is a salen-type Schiff-base ligand) motif similar to 1. Compound 2 has two types of bridges, a cyano bridge (-NC-) and a biphenolate bridge (-(O)(2)-), connecting Mn(III) and Fe(III) ions and the two Mn(III) ions, respectively. Both bridges mediate ferromagnetic interactions, as shown by modeling the magnetic susceptibility above 10 K with g(av) = 2.03, J(Mn)(-)(Fe)/k(B) = +6.5 K, and J'/k(B) = +0.07 K, where J' is the exchange coupling between the trimer units. The dc magnetic measurements of a single crystal using micro-SQUID and Hall-probe magnetometers revealed a uniaxial anisotropy (D(T)/k(B) = -0.94 K) with an easy axis lying along the chain direction. Frequency dependence of the ac susceptibility and time dependence of the dc magnetization have been performed to study the slow relaxation of the magnetization. A mean relaxation time has been found, and its temperature dependence has been studied. Above 1.4 K, both magnetic susceptibility and relaxation time are in agreement with the dynamics described in the 1960s by R. J. Glauber for one-dimensional systems with ferromagnetically coupled Ising spins (tau(0) = 3.7 x 10(-)(10) s and Delta(1)/k(B) = 31 K). As expected, at lower temperatures below 1.4 K, the relaxation process is dominated by the finite-size chain effects (tau'(0) = 3 x 10(-)(8) s and Delta(2)/k(B) = 25 K). The detailed analysis of this single-chain magnet behavior and its two regimes is consistent with magnetic parameters independently estimated (J'and D(T)) and allows the determination of the average chain length of 60 nm (or 44 trimer units). This work illustrates nicely a new strategy to design single-chain magnets by coupling ferromagnetically single-molecule magnets in one dimension.  相似文献   

19.
Triethylenetetramine (L(4)) was used as a tetradentate blocking ligand that, after complexation with Ni(II), leaves two sites ready for ligation with tricyanomethanide. The formed binuclear complex [L(4)Ni(NCC(CN)CN)(2)NiL(4)](ClO(4))(2) exhibits a ferromagnetic coupling with J/hc = +0.15 cm(-1) and g(Ni) = 2.126; below 16 K, a ferromagnetic ordering is evidenced by ac magnetic susceptibility (both in-phase and out-of-phase), magnetization, field-cooled magnetization, and zero-field-cooled magnetization measurements.  相似文献   

20.
A new family of tetranuclear Ni complexes [Ni(4)(ROH)(4)L(4)] (H(2)L = salicylidene-2-ethanolamine; R = Me (1) or Et (2)) has been synthesized and studied. Complexes 1 and 2 possess a [Ni(4)O(4)] core comprising a distorted cubane arrangement. Magnetic susceptibility and inelastic neutron scattering studies indicate a combination of ferromagnetic and antiferromagnetic pairwise exchange interactions between the four Ni(II) centers, resulting in an S = 4 spin ground state. Magnetization measurements reveal an easy-axis-type magnetic anisotropy with D approximately -0.93 cm(-)(1) for both complexes. Despite the large magnetic anisotropy, no slow relaxation of the magnetization is observed down to 40 mK. To determine the origin of the low-temperature magnetic behavior, the magnetic anisotropy of complex 1 was probed in detail using inelastic neutron scattering and frequency domain magnetic resonance spectroscopy. The spectroscopic studies confirm the easy-axis-type anisotropy and indicate strong transverse interactions. These lead to rapid quantum tunneling of the magnetization, explaining the unexpected absence of slow magnetization relaxation for complex 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号