首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纪三郝  巨勇  肖强  赵玉芬 《中国化学》2006,24(7):943-949
Novel steroidal phosphoramidate conjugates of 3'-azido-2',3'-dideoxythymidine(AZT)and amino acid esterswere synthesized and determined by positive and negative ion electrospray ionization mass spectrometry.The MSfragmentation behaviors of the steroidal phosphoramidate conjugates have been investigated in conjunction withtandem mass spectrometry of ESI-MS/MS.There were three characteristic fragment ions in the positive ion ESImass spectra,which were the Na adduct ions with loss of steroidal moiety,amino acid ester moiety from pseudomolecular ion(M Na)~ ,and the phosphoamino acid methyl ester Na adduct ion by α-cleavage of the phosphora-midate respectively.The main fragment ions in negative ion ESI mass spectra were the ion(M-HN_3)~-,the ion(M-AZT-H)~-,and the ion(M-steroidal moiety-H)~- besides the pseudo molecular ion(M-H)~-.Thefragmentation patterns did not depend on the attached amino acid ester moiety.  相似文献   

2.
Electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn) and liquid chromatography coupled with on-line electrospray ionization tandem mass spectrometry (LC/ESI-MSn) were performed to elucidate the clearage rule of nine investigated C21 steroidal saponins and identify them in the saponin fraction of 90% ethanolic extracts from the root and rhizome of Cynanchum versicolor Bunge. The fragments of C21 steroidal saponins in positive and negative ESI-MSn were used to deduce their mass spectral fragmentation mechanisms, and their structures were further confirmed by ESI-MSn in positive mode. The MSn spectra of the [M+Na]+ ions for saponins provided a wealth of structural information on glycosidic bond cleavage, which allowed a straightforward interpretation of spectra, with respect to the identifications of features such as the sequences of sugars attached to saponins and sugar type. By using LC/ESI-MSn, nine C21 steroidal saponins were detected in the saponin fraction of C. versicolor, and an isomer of atratoglaucoside A was elucidated simultaneously. All nine compounds showed an abundant ion for the loss of 46 Da (HCOOH) from [M+Na]+. The losses of monosaccharide sequences and aglycone as neutral fragmentation from [M+Na-HCOOH]+ were also acquired as the characteristic ions of these C21 steroidal saponins. It provided important information on monosaccharide sequences and in particular on sugar types and could be used to identify and elucidate other C21 steroidal saponins. These studies allowed us to rapidly identify C21 steroidal saponins from Radix cynanchi atrati. It is indicated that the described method had wide applicability to rapidly screen and provide structural confirmation on C21 steroidal saponins in crude materials.  相似文献   

3.
A plasma desorption mass spectrometry study was made on the properties of glucose and glucose/glucuronic acid thin films as matrices for amino acids, small and large peptides and insulin. Amino acids and small peptides are distributed throughout the film as it is formed from aqueous solutions and the mass spectra are similar to what is observed for nitrocellulose matrices. AngiotensinII (angII), insulin, and reduced insulin containing the separated A- and B-chains concentrate at the surface of the film due to the hydrophobic interaction. Extensive positive and negative fragmentation patterns are observed for angII using the glucose glass film. The fragment ions appear to be formed from layers just below the surface of the film. The co-matrix of glucuronic acid/glucose produces a higher molecular ion yield. The spectrum of insulin in glucuronic acid/glucose consists mainly of positive ions with a fragmentation pattern from the B-chain. The spectrum of reduced insulin using a nitrocellulose matrix gives B-chain ions but glucose/glucuronic acid gives A-chain ions in both the positive and negative ion spectra. The fragmentation patterns of the A-chain and B-chain ions are sensitive to the nature of the matrix. An extensive negative ion A-chain fragmentation pattern was observed with glutamate ions serving as the charge centers. The reasons for the behavior of the A- and B-chain fragmentation patterns in these matrices is not clear.  相似文献   

4.
Eighteen different triterpene saponins isolated from Polygala tenuifolia were investigated by electrospray ionization ion trap multiple-stage mass spectrometry (ESI-ITMS(n)) in positive and negative ion modes. MS(1)-MS(3)/MS(4) spectra of the both modes were analyzed, and they all gave fragments in line and shared common fragmentation patterns. Key fragments from MS(n) spectra of both the modes and their proposed fragmentation pathways were constructed with examples illustrated for the formation of characteristic fragments in the saponins. Two special fragmentation patterns were proposed: (1) the formation of fragments by cleavage of CH(2)O from Delta(12)-14alpha-CH(2)OH of the oleanene-type saponin aglycone in both positive and negative MS(n) (n > or = 2) modes; (2) the occurrence of fragments by cleavage of CO(2) and 3-glucose as the characteristic structure feature of 23-COOH at the oleanene-type saponin aglycones coupled with 3-Glc substitutes in the negative MS(n) (n > or = 2) modes. Peak intensities in MS(n) spectra were also correlated with structural features and fragmentation preferences of the investigated saponins, which are discussed in detail. In general, fragments formed predominantly by cleavages of glycosidic bonds in the positive mode, while selective cleavages of acyl bonds preceded that of glycosidic bonds in negative MS(n) (n > or = 2) mode, both of which could well be applied to the structural analysis of these saponins. Interpretation of MS(n) spectra presented here provided diagnostic key fragment ions important for the structural elucidation of saponins in P.tenuifolia.  相似文献   

5.
Triterpenoid saponins in bioactive crude extract from Symplocos chinensis were rapidly identified using electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn) and liquid chromatography coupled with sequential mass spectrometry (LC-MSn). According to the characteristic fragmentation behavior of known glucuronide-type triterpenoid saponins isolated from this plant, a total of fourteen constituents in the crude extract were structurally characterized on the basis of their retention time and tandem mass spectrometric analysis, including five pairs of naturally occurring isomers. Except one known saponin formerly obtained, the other constituents were new compounds. The analytical method of LC-MSn combined with ESI-MSn in positive and negative ion modes has been developed for the direct structural elucidation of triterpenoid saponins of this kind in plant extracts.  相似文献   

6.
The underivatized saponins from Tribulus terrestris and Panax ginseng have been investigated by electrospray ionization multi-stage tandem mass spectrometry (ESI-MS(n)). In ESI-MS spectra, a predominant [M + Na](+) ion in positive mode and [M - H](-) ion in negative mode were observed for molecular mass information. Multi-stage tandem mass spectrometry of the molecular ions was used for detailed structural analysis. Fragment ions from glycoside cleavage can provide information on the mass of aglycone and the primary sequence and branching of oligosaccharide chains in terms of classes of monosaccharides. Fragment ions from cross-ring cleavages of sugar residues can give some information about the linkages between sugar residues. It was found that different alkali metal-cationized adducts with saponins have different degrees of fragmentation, which may originate from the different affinity of a saponin with each alkali metal in the gas phase. ESI-MS(n) has been proven to be an effective tool for rapid determination of native saponins in extract mixtures, thus avoiding tedious derivatization and separation steps.  相似文献   

7.
[M + NO3]- And [M + (NO3)2]2- ions were produced by electrospray from neutral high-mannose ([Man](5-9)[GlcNAc]2, [Glc](1-3)[Man](4-9)[GlcNAc]2) N-linked glycans and their 2-aminobenzamide derivatives sprayed from methanol:water containing ammonium nitrate. Low energy collision-induced decomposition (CID) spectra of both types of ions were almost identical and dominated by cross-ring and C-type fragments, unlike the corresponding spectra of the positive ions that contained mainly B- and Y-type glycosidic fragments. This behavior could be rationalized by an initial proton abstraction from various hydroxy groups by the initially-formed anionic adduct. These negative ion spectra were more informative than the corresponding positive ion spectra and contained prominent ions that were diagnostic of structural features such as the composition of individual antennas that were not easily obtainable by other means. C-ions defined the sequence of the constituent monosaccharide residues. Detailed fragmentation mechanisms are proposed to account for many of the diagnostic ions.  相似文献   

8.
The mass spectral properties of glucuronides of the 9- and 10-hydroxylated metabolites of RT-3003 (Vintoperol; (-)-1beta-ethyl-1alpha-hydroxymethyl-1,2,3,4,6,7, 12balpha-octahydroindolo[2,3-a]quinolizine), which were fractionated by high-performance liquid chromatography with fluorescence detection, were investigated using the positive ion electrospray ionization mode. These glucuronides showed predominantly the protonated molecular ion ([M + H](+) ion), and the [M + H](+) ion provided a characteristic product ion spectrum in which abundant ions were obtained at m/z 301, 160 and 142. The first ion, corresponding to the [aglycone + H](+) ion, was produced by neutral loss of the glucuronic acid moiety from the [M + H](+) ion. The product ion spectrum of the [M + H](+) ion of hydroxy-RT-3003 revealed a number of ions common to the glucuronide spectra, suggesting that other two ions observed most likely represent fragmentation of hydroxy-RT-3003. In turn, these glucuronides were positional isomers with respect to the binding site of glucuronic acid. The structures of the isomer pairs were discriminated by the presence of the ion of m/z 318 or 336 in the product ion spectrum. These ions were produced by fission of the C-ring, the same as for the formation of the ions of m/z 160 and 142, as were observed in the product ion spectrum from the [M + H](+) ion of hydroxy-RT-3003. For the formation of these ions, an unusual fragmentation process was proposed, and these ion structures were supported by evidence from the accurate mass measurement data. Additionally, in the sulfates of hydroxylated metabolites, a similar product ion corresponding to the ion of m/z 336 found in the phenolic glucuronides was observed, and was applied for identification of the sulfate metabolites.  相似文献   

9.
The fragmentation pathways of oxygenated tetracyclic triterpenoids from Ganoderma lucidum were systematically studied based on interpreting the mass spectra of 44 known triterpenoids using a combination of multistage tandem mass spectrometry (MS(n)) experiments and high-resolution mass spectrometry (HRMS) analysis. In negative ion mode, the fragmentation pathways of triterpenoid acids are rather characteristic. After the prominent loss of H(2) O or CO(2), cleavages take place on the A, B, C and D rings. Interestingly, the cleavage mode is highly dependent on the positions of the carbonyl groups and hydroxyl groups in the tetracyclic skeleton. Characteristic cleavage of ring A occurs in 7-oxo-11-H or 7-oxo-11-hydroxy derivatives; characteristic cleavage of ring B occurs in the 7-oxo-11-hydroxy derivatives; characteristic cleavage of ring C occurs in the 7-hydroxy-15-oxo derivatives; while the cleavage of ring D can be observed in the majority of the compounds investigated. The odd-electron species, which disobey the 'even-electron rule', are also observed and discussed in this paper. These phenomena provide an easy way to determine the tetracyclic skeleton and distinguish the isomers of the triterpenoids from each other. What is more, the fragmentation pathways of triterpenoid alcohols were also investigated in positive ion mode. The accurate masses of the product ions were determined using quadrupole orthogonal time-of-flight (QTOF) instruments. Finally, the fragmentation rules were applied to identify the components of G. lucidum. As a result, 73 triterpenoids including 11 new ones were identified. The triterpenoids were classified into six subclasses according to their different fragmentation behaviors. The application of tandem mass spectrometry was further explored.  相似文献   

10.
Oleanane‐type triterpene saponins (OTS) are major active ingredients in Glycyrrhiza uralensis. In this work, a rapid‐resolution liquid chromatography with time‐of‐flight mass spectrometry (RRLC/TOF‐MS) method has been developed to characterize and identify OTS from G. uralensis. The major diagnostic ions and fragmentation pathways from thirteen OTS have been characterized for the first time. At a low fragmentor voltage of 120 V in positive ion mode, the precursor ion [M + H]+ or/and [M + Na]+ was obtained for accurate determination of molecular formula. When the fragmentor voltage was increased to 425 V, abundant characteristic fragment ions were observed for structural characterization. Neutral losses of sugar moieties, such as glucuronic acid (GlcA, 176 Da), glucose (Glc, 162 Da) and rhamnose (Rha, 146 Da), were commonly observed in the MS spectra for prediction of the sugar number and sequences. Other typical losses included AcOH (60 Da), CH2O (30 Da), 2 × H2O (2 × 18 Da) and HCOOH (46 Da) from [Aglycone + H–H2O]+ (named [B]+), corresponding to the presence of a C22‐acetyl group, C24‐hydroxyl group, C22‐hydroxyl group or C30‐carboxyl group on the aglycone moiety, respectively. In particular, characteristic ring cleavages of the aglycone moieties on A‐ and B‐rings were observed. Based on the fragmentation patterns of reference compounds, nineteen OTS have been identified in an extract of G. uralensis, thirteen of which were unambiguously identified and the other six were tentatively assigned. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
High-performance liquid chromatography coupled with electrospray ionization multi-stage tandem mass spectrometry (HPLC/ESI-MS(n)) was applied to characterize and identify triterpenoid saponins in crude extracts from nine species of Clematis L. After separation on a Zorbax SB-C(18) column, negative ESI-MS experiments were performed. The quasi-molecular ions [M-H]-, [M+Cl]- and [M+HCOO]- were observed in the full-scan MS spectra of all compounds. The MS(n) (n = 2-4) data of the [M-H]- ions provided structural information on the sugar sequence of the oligosaccharide chains and on the aglycone of the saponins. In addition, the fragmentation mechanisms could be deduced from the fragment ions. As a result, eight saponins were unambiguously identified in C. ganpiniana by comparison with reference compounds. In addition, a new compound was tentatively identified as 3-O-ribopyranosyl --> rhamnopyranosyl --> (glucopyranosyl) --> arabinopyranosylhederagenin 28-O-rhamnopyranosyl --> glucopyranosyl --> glucopyranosyl ester (peak 1), and another one was tentatively deduced to be 3-O-glucopyranosyl --> ribopyranosyl --> rhamnopyranosyl --> arabinopyranosylhederagenin 28-O-rhamnopyranosyl --> glucopyranosyl --> glucopyranosyl ester (peak 5) from the genus Clematis L. for the first time. By ESI-MS(n), non-isomeric saponins could be discriminated rapidly. It is of interest that cleavage preferentially occurrs at the ester bond at C-28 and the charge is easy to transfer onto the oligosaccharide chain when the ester bond of a monodesmosidic saponin like HNH cleaves.  相似文献   

12.
A rapid‐resolution liquid chromatography (RRLC) method coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (Q‐TOF MS/MS) has been developed for analysis of oleanane‐type triterpenoid saponins in Achyranthes bidentata. Collision‐induced dissociation techniques were used to fragment the precursor molecular ions and the resulting product ions. A retro‐Diels‐Alder rearrangement from the oleanane aglycone skeleton in the MS/MS process yielded characteristic fragment ions in positive ion mode. These characteristic ions were helpful in predicting the aglycone structure. Losses of monosaccharide sequences, presence of sugar‐chain fragment ions, and cleavage of CO2 were observed for important information on sugar types and attachment sequences. Fragmentation rules of three major groups of saponins from A. bidentata were summarized, and the possible fragmentation pathways were proposed. A total of 22 compounds including both the target and unknown oleanane‐type triterpenoid saponins were rapidly screened and predicted in the herbal extract by the developed method. The RRLC‐Q‐TOF MS/MS method has provided a powerful approach for rapid separation, target screening and structural elucidation of oleanane‐type saponins, and also opened perspectives for similar studies on other herbal medicines. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Low molecular weight polyisobutylenes (PIB) with chlorine, olefin and succinic acid end‐groups were studied using direct analysis in real time mass spectrometry (DART‐MS). To facilitate the adduct ion formation under DART conditions, NH4Cl as an auxiliary reagent was deposited onto the PIB surface. It was found that chlorinated adduct ions of olefin and chlorine telechelic PIBs, i.e. [M + Cl]? up to m/z 1100, and the deprotonated polyisobutylene succinic acid [M? H]? were formed as observed in the negative ion mode. In the positive ion mode formation of [M + NH4]+, adduct ions were detected. In the tandem mass (MS/MS) spectra of [M + Cl]?, product ions were absent, suggesting a simple dissociation of the precursor [M + Cl]? into a Cl? ion and a neutral M without fragmentation of the PIB backbones. However, structurally important product ions were produced from the corresponding [M + NH4]+ ions, allowing us to obtain valuable information on the arm‐length distributions of the PIBs containing aromatic initiator moiety. In addition, a model was developed to interpret the oligomer distributions and the number average molecular weights observed in DART‐MS for PIBs and other polymers of low molecular weight. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Mass spectrometric and tandem mass spectrometric behavior of eight anabolic steroid glucuronides were examined using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) in negative and positive ion mode. The objective was to elucidate the most suitable ionization method to produce intense structure specific product ions and to examine the possibilities of distinguishing between isomeric steroid glucuronides. The analytes were glucuronide conjugates of testosterone (TG), epitestosterone (ETG), nandrolone (NG), androsterone (AG), 5alpha-estran-3alpha-ol-17-one (5alpha-NG), 5beta-estran-3alpha-ol-17-one (5beta-NG), 17alpha-methyl-5alpha-androstane-3alpha,17beta-diol (5alpha-MTG), and 17alpha-methyl-5beta-androstane-3alpha,17beta-diol (5beta-MTG), the last four being new compounds synthesized with enzyme-assisted method in our laboratory. High proton affinity of the 4-ene-3-one system in the steroid structure favored the formation of protonated molecule [M + H]+ in positive ion mode mass spectrometry (MS), whereas the steroid glucuronides with lower proton affinities were detected mainly as ammonium adducts [M + NH4]+. The only ion produced in negative ion mode mass spectrometry was a very intense and stable deprotonated molecule [M - H]- . Positive ion ESI and APCI MS/MS spectra showed abundant and structure specific product ions [M + H - Glu]+, [M + H - Glu - H2O]+, and [M + H - Glu - 2H2O]+ of protonated molecules and corresponding ions of the ammonium adduct ions. The ratio of the relative abundances of these ions and the stability of the precursor ion provided distinction of 5alpha-NG and 5beta-NG isomers and TG and ETG isomers. Corresponding diagnostic ions were only minor peaks in negative ion MS/MS spectra. It was shown that positive ion ESI MS/MS is the most promising method for further development of LC-MS methods for anabolic steroid glucuronides.  相似文献   

15.
For detection and differentiation of two types of triterpenoid saponins based on different aglycons of the lupane and oleanane skeleton from the roots of Pulsatilla chinensis (Bunge) Regel, the silver ion was introduced and electrospray ionization multi-stage tandem mass spectrometry was applied to analyze eleven triterpenoid saponin silver complexes. The quasi-molecular ion [M+Ag](+) was observed in the full-scan MS spectra of all the silver complexes. The MS(2) data of the [M+Ag](+) ion provided structural information on the sugar sequence of the oligosaccharide chains and the aglycon of the saponins. There are two patterns in the cleavage pathway of oleanane-type saponins. One is elimination of the sugar chain and subsequent loss of the carboxylic group which is the same as the cleavage of lupine-type saponins. The other is loss of the distinguishing ions at m/z 72 and 28 (C(2)H(4)) followed by loss of the carboxylic group. Diagnostic fragmentation pathways of the silver complexes of the saponins allow successful identification of the two types of saponins from the roots of Pulsatilla chinensis (Bunge) Regel.  相似文献   

16.
Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds.  相似文献   

17.
The structural characterization of four steroidal saponin compounds involving two and three sugar groups, namely spirostanol saponins and furostanol saponins, were investigated by positive ion fast-atom bombardment (FAB), electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) techniques. Important structural information was obtained from collision-induced dissociation (CID) and FAB-MS spectra with different liquid matrices. It was found that a characteristic fragmentation involving the loss of 144 Da arising from the cleavage of the E-ring was observed when there was no sugar chain at the C-26 position. When a glucoside group was substituted at the C-26 position, this C-26 sugar moiety was preferentially eliminated. All of these compounds produced a major product ion with a stable skeleton structure at m/z 255. The results of this paper can assist structural analysis of mixtures of steroidal saponins.  相似文献   

18.
The fragmentation pathways of seven types of taxoids were investigated by using a LC-MS/MS method, namely: (1) neutral taxoids with a C-4(20) double bond; (2) taxoids with a C-4(20) double bond and oxygenation at C-14; (3) 5-cinnamoyl taxoids with a C-4(20) double bond; (4) a basic taxoid with a C-4(20) double bond; (5) a taxoid with a C-4(20) epoxide; (6) taxoids with an oxetane ring; and (7) taxoids with an oxetane ring and a phenylisoserine C-13 side chain. Depending on the class of core structure and the substitution pattern, each taxoid gave either the molecular adduct ion [M+NH4]+ or [M+H]+. In the MS/MS, the molecular adduct ion gave characteristic product ions corresponding to the loss of water, acetic acid, benzoic acid, and cinnamic acid or the phenylisoserine group. These could reflect the difference of the substitutions and structural modifications and should be utilized for the structure elucidation oftaxoids by LC-MS.  相似文献   

19.
Three saponins were extracted and isolated from starfish by reversed-phase high performance liquid chromatography (HPLC), and analyzed by fast atom bombardment mass spectrometry (FAB-MS). Their molecular weight information could be obtained by the presence of abundant [M+Na]+ ions and weak [M+H]+ ions in FAB-MS spectra. Moreover, high resolution mass measurements of their [M+Na]+ ions were performed at the resolution of 10000 to elucidate the element composition of extracted saponins. The collision-induced dissociation (CID) of sodium-adducted molecules [M+Na]+ yielded diverse product ions via dissociated processes. In the collision-induced dissociation (CID)-MS/MS analysis of [M+Na]+ ion, the sulfate-containing saponins produced characteristic ions such as SO4Na+, [NaHSO4+Na]+, [M+Na-sugar]+ and [M+Na-2sugar]+ ions, whereas the sulfate-free compound showed characteristic ions produced by cleavage of sugar moiety and side chain of aglycone. The fragmentation patterns could provide information on the linkage position of sugar groups in aglycone and sulfate groups.  相似文献   

20.
The fragmentation behavior of some glucuronide-type triterpenoid saponins from Symplocos chinensis, and their analogues escin Ia and Ib, were investigated by positive ion electrospray ionization tandem mass spectrometry using a quadrupole linear ion trap mass spectrometer. The fragmentation patterns of these saponins significantly changed in accordance with structural variations in the glucuronyl residue of the oligosaccharide chain. It was found that the carboxyl group and hydroxyl group at the C-3' position of the glucuronyl residue were the key sites for determining the fragmentation behavior of these compounds. When the carboxyl group was esterified, only the C(2alpha) ion, and no B(2alpha) ion, and cationized aglycone were observed. When the hydroxyl group at C-3' was acylated, the inherent cross-ring cleavage was hindered. However, glycosidic cleavages always occurred, regardless of the crucial structural variations. The results of the present studies can benefit the determination of trace triterpenoid saponins of this type in crude plant extracts, and also provide background information to aid the structural investigations of similar glycoconjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号