首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collins MJ  Ray K  Que L 《Inorganic chemistry》2006,45(20):8009-8011
The complex [Fe(IV)O(N4Py)]2+ (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) has been prepared by bulk electrolysis in aqueous CH3CN and CH2Cl2, and its redox properties characterized. Bulk chronocoulometry and spectropotentiometry experiments in CH3CN show that [Fe(II)(N4Py)(NCCH3)]2+ can be oxidized quantitatively to its iron(III) derivative at an applied potential of +0.71 V vs ferrocene and then to the oxoiron(IV) complex (in the presence of added water) at potentials above +1.3 V. The E1/2 value for the Fe(IV/III) couple has been estimated to be +0.90 V from spectropotentiometric titrations in CH3CN and cyclic voltammetric measurements in CH2Cl2.  相似文献   

2.
3.
4.
Coupling a photoredox module and a bio-inspired non-heme model to activate O2 for the oxygen atom transfer (OAT) reaction requires a vigorous investigation to shed light on the multiple competing electron transfer steps, charge accumulation and annihilation processes, and the activation of O2 at the catalytic unit. We found that the efficient oxidative quenching mechanism between a [Ru(bpy)3]2+ chromophore and a reversible electron mediator, methyl viologen (MV2+), to form the reducing species methyl viologen radical (MV˙+) can convey an electron to O2 to form the superoxide radical and reset an Fe(iii) species in a catalytic cycle to the Fe(ii) state in an aqueous solution. The formation of the Fe(iii)-hydroperoxo (FeIII–OOH) intermediate can evolve to a highly oxidized iron-oxo species to perform the OAT reaction to an alkene substrate. Such a strategy allows us to bypass the challenging task of charge accumulation at the molecular catalytic unit for the two-electron activation of O2. The FeIII–OOH catalytic precursor was trapped and characterized by EPR spectroscopy pertaining to a metal assisted catalysis. Importantly, we found that the substrate itself can act as an electron donor to reset the photooxidized chromophore in the initial state closing the photocatalytic loop and hence excluding the use of a sacrificial electron donor. Laser Flash Photolysis (LFP) studies and spectroscopic monitoring during photocatalysis lend credence to the proposed catalytic cycle.

A photoinduced iron(III)-hydroperoxo intermediate (FeIII-OOH) was trapped by bypassing the charge accumulation process, that triggers the oxygen atom transfer reaction to an alkene with O2 as sole oxygen source in water.  相似文献   

5.
We discuss electronic properties of the molecular systems with the short distance Fe–O unit, which are presumably formed as reaction intermediates during oxygen activation by non-heme enzymes. By performing an analysis of electronic densities in terms of multiconfigurational expansions of wavefunctions with localized orbitals the electronic properties of the Fe–O moiety in two model complexes are compared. The first one refers to the enzymatic intermediate, and the second biomimetic complex models a synthetic compound [Fe(O)(TMC)(NCCH3)](OTf)2 with a terminal Fe–O unit, which is experimentally characterized as the Fe(IV)=O species. We show that the orbital pictures of the FeO unit in both model complexes share common features. According to these simulations, the non-heme enzymatic intermediates may be assigned to the systems with the oxidation state of Fe between III and IV, as recently proposed for the TauD enzyme in experimental spectroscopic studies.  相似文献   

6.
The trigonal-bipyramidal high-spin (S = 2) oxoiron(IV) complex [Fe(IV)(O)(TMG(2)dien)(CH(3)CN)](2+) (7) was synthesized and spectroscopically characterized. Substitution of the CH(3)CN ligand by anions, demonstrated here for X = N(3)(-) and Cl(-), yielded additional S = 2 oxoiron(IV) complexes of general formulation [Fe(IV)(O)(TMG(2)dien)(X)](+) (7-X). The reduced steric bulk of 7 relative to the published S = 2 complex [Fe(IV)(O)(TMG(3)tren)](2+) (2) was reflected by enhanced rates of intermolecular substrate oxidation.  相似文献   

7.
Sulfoxidation of thioanisoles by a non-heme iron(IV)-oxo complex, [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), was remarkably enhanced by perchloric acid (70% HClO(4)). The observed second-order rate constant (k(obs)) of sulfoxidation of thioaniosoles by [(N4Py)Fe(IV)(O)](2+) increases linearly with increasing concentration of HClO(4) (70%) in acetonitrile (MeCN)at 298 K. In contrast to sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+), the observed second-order rate constant (k(et)) of electron transfer from one-electron reductants such as [Fe(II)(Me(2)bpy)(3)](2+) (Me(2)bpy = 4,4-dimehtyl-2,2'-bipyridine) to [(N4Py)Fe(IV)(O)](2+) increases with increasing concentration of HClO(4), exhibiting second-order dependence on HClO(4) concentration. This indicates that the proton-coupled electron transfer (PCET) involves two protons associated with electron transfer from [Fe(II)(Me(2)bpy)(3)](2+) to [(N4Py)Fe(IV)(O)](2+) to yield [Fe(III)(Me(2)bpy)(3)](3+) and [(N4Py)Fe(III)(OH(2))](3+). The one-electron reduction potential (E(red)) of [(N4Py)Fe(IV)(O)](2+) in the presence of 10 mM HClO(4) (70%) in MeCN is determined to be 1.43 V vs SCE. A plot of E(red) vs log[HClO(4)] also indicates involvement of two protons in the PCET reduction of [(N4Py)Fe(IV)(O)](2+). The PCET driving force dependence of log k(et) is fitted in light of the Marcus theory of outer-sphere electron transfer to afford the reorganization of PCET (λ = 2.74 eV). The comparison of the k(obs) values of acid-promoted sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+) with the k(et) values of PCET from one-electron reductants to [(N4Py)Fe(IV)(O)](2+) at the same PCET driving force reveals that the acid-promoted sulfoxidation proceeds by one-step oxygen atom transfer from [(N4Py)Fe(IV)(O)](2+) to thioanisoles rather than outer-sphere PCET.  相似文献   

8.
The stoichiometric formation of [FeIV(O)(TPA)(NCMe)]2+ (TPA = tris(2-pyridylmethyl)amine) from the reaction of [FeII(TPA)(NCMe)2]2+ with 1 equiv. peracetic acid exhibits more kinetic complexity than might be expected from the simple stoichiometry. A multiple-pathway mechanism with an FeIV-peracetic acid species, [(TPA)FeIV(O)((H)O3CR)]2+/+, as the primary oxidant is proposed.  相似文献   

9.
10.
11.
12.
We report in this study that an oxoiron(IV) porphyrin complex bearing electron-deficient porphyrin ligand, (TPFPP)FeIV=O (TPFPP = meso-tetrakis(pentafluorophenyl)porphinato dianion), shows reactivities similar to those found in oxoiron(IV) porphyrin pi-cation radicals. In the epoxidation of olefins by the (TPFPP)FeIV=O complex, epoxides were yielded as major products; cyclohexene oxide was the sole product formed in the epoxidation of cyclohexene, and stilbenes were stereospecifically oxidized to the corresponding epoxide products. More striking results were obtained in alkane hydroxylation reactions; the hydroxylation of adamantane afforded a high degree of selectivity for tertiary C-H bonds over secondary C-H bonds, and the hydroxylation of cis-1,2-dimethylcyclohexane yielded a tertiary alcohol product with >99% retention of stereochemistry. The latter result demonstrates that an oxoiron(IV) porphyrin complex hydroxylates alkanes with a high stereospecificity. Isotope labeling studies performed with H218O and 18O2 in the olefin epoxidation and alkane hydroxylation reactions demonstrated that oxygen atoms in oxygenated products derived from the oxoiron(IV) porphyrin complex.  相似文献   

13.
A mononuclear nonheme oxoiron(IV) complex bearing a pentadentate N5 ligand was prepared in aqueous solution; the pH dependence of its stability and reactivities was reported along with the mechanistic details of sulfide oxidation by the oxoiron(IV) species.  相似文献   

14.
Treatment of [Fe(IV)(O)(TPA)(NCMe)](CF3SO3)2 [TPA, N,N,N-tris(2-pyridylmethyl)amine] with 3 equiv of NR4X (X = CF3CO2, Cl, or Br) in MeCN at -40 degrees C affords a series of metastable [Fe(IV)(O)(TPA)(X)]+ complexes. Some characteristic features of the S = 1 oxoiron(IV) unit are quite insensitive to the ligand substitution in the equatorial plane, namely, the Fe-O distances (1.65-1.66 A), the energy ( approximately 7114.5 eV) and intensity [25(2) units] of the 1s-to-3d transition in the X-ray absorption spectra, and the M?ssbauer isomer shifts (0.01-0.06 mm.s(-1)) and quadrupole splittings (0.92-0.95 mm.s(-1)). The coordination of the anionic X ligand, however, is evidenced by red shifts of the characteristic near-IR ligand-field bands (720-800 nm) and spectroscopic observation of the bound anion by (19)F NMR for X = CF3CO2 and by EXAFS analysis for X = Cl (r(Fe-Cl) = 2.29 A) and Br (r(Fe-Br) = 2.43 A). Density functional theory calculations yield M?ssbauer parameters and bond lengths in good agreement with the experimental data and produce excited-state energies that follow the trend observed in the ligand-field bands. Despite mitigating the high effective charge of the iron(IV) center, the substitution of the MeCN ligand with monoanionic ligands X- decreases the thermal stability of [Fe(IV)(O)(TPA)]2+ complexes. These anion-substituted complexes model the cis-X-Fe(IV)=O units proposed in the mechanisms of oxygen-activating nonheme iron enzymes.  相似文献   

15.
Olefin epoxidations are a class of reactions appropriate for the investigation of oxygenation processes in general. Here, we report the catalytic epoxidation of various olefins with a novel, cross-bridged cyclam manganese complex, Mn(Me2EBC)Cl2 (Me2EBC is 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane), using hydrogen peroxide as the terminal oxidant, in acetone/water (ratio 4:1) as the solvent medium. Catalytic epoxidation studies with this system have disclosed reactions that proceed by a nonradical pathway other than the expected oxygen-rebound mechanism that is characteristic of high-valent, late-transition-metal catalysts. Direct treatment of olefins with freshly synthesized [Mn(IV)(Me2EBC)(OH)2](PF6)2 (pKa = 6.86) in either neutral or basic solution confirms earlier observations that neither the oxo-Mn(IV) nor oxo-Mn(V) species is responsible for olefin epoxidization in this case. Catalytic epoxidation experiments using the 18O labels in an acetone/water (H2(18)O) solvent demonstrate that no 18O from water (H2(18)O) is incorporated into epoxide products even though oxygen exchange was observed between the Mn(IV) species and H2(18)O, which leads to the conclusion that oxygen transfer does not proceed by the well-known oxygen-rebound mechanism. Experiments using labeled dioxygen, (18)O2, and hydrogen peroxide, H2(18)O2, confirm that an oxygen atom is transferred directly from the H2(18)O2 oxidant to the olefin substrate in the predominant pathway. The hydrogen peroxide adduct of this high-oxidation-state manganese complex, Mn(IV)(Me2EBC)(O)(OOH)+, was detected by mass spectra in aqueous solutions prepared from Mn(II)(Me2EBC)Cl2 and excess hydrogen peroxide. A Lewis acid pathway, in which oxygen is transferred to the olefin from that adduct, Mn(IV)(Me2EBC)(O)(OOH)+, is proposed for epoxidation reactions mediated by this novel, non-heme manganese complex. A minor radical pathway is also apparent in these systems.  相似文献   

16.
Activation parameters for epoxidation and allylic hydroxylation reactions of cyclohexene with FeIVO(TMP)*+Cl (1) were determined. Within the experimental temperature range, the epoxidation reaction was enthalpy-controlled (i.e., DeltaH > -TDeltaS), while the allylic hydroxylation reaction was entropy-controlled (i.e., -TDeltaS > DeltaH). An unexpectedly large contribution of the entropy term for the allylic hydroxylation reaction indicated that the free energy of activation, DeltaG, rather than the activation energy, Ea, should be used to discuss the reaction mechanism and chemoselectivity. The results of this study bring caution to previous density functional theory studies, in which the reaction mechanism and chemoselectivity are evaluated from calculated Ea.  相似文献   

17.
18.
19.
The green complex S=1 [(TPEN)FeO]2+ [TPEN=N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine] has been obtained by treating the [(TPEN)Fe]2+ precursor with meta-chloroperoxybenzoic acid (m-CPBA). This high-valent complex belongs to the emerging family of synthetic models of Fe(IV)=O intermediates invoked during the catalytic cycle of biological systems. This complex exhibits spectroscopic characteristics that are similar to those of other models reported recently with a similar amine/pyridine environment. Thanks to its relative stability, vibrational data in solution have been obtained by Fourier transform infrared. A comparison of the Fe=O and Fe=(18)O wavenumbers reveals that the Fe-oxo vibration is not a pure one. The ability of the green complex to oxidize small organic molecules has been studied. Mixtures of oxygenated products derived from two- or four-electron oxidations are obtained. The reactivity of this [FeO]2+ complex is then not straightforward, and different mechanisms may be involved.  相似文献   

20.
Molybdenum(IV) monooxo compound that contains bis(beta-ketiminato) ligands activates molecular oxygen forming a molybdenum(VI) monooxo peroxo compound, representing a new entry into molybdenum peroxo derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号