首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combined heat and mass transfer in free, forced, and mixed convection flows along a porous wedge with a magnetic effect in the presence of a chemical reaction is investigated. The flow field characteristics are analyzed with the Runge—Kutta—Gill method in conjunction with the shooting method, and local nonsimilarity method. The governing boundary-layer equations are written in a dimensionless form with the use of the Falkner—Skan transformations. Owing to the effect of the buoyancy force, the power law of temperature and concentration, and suction/injection on the wall of the wedge, the flow field is locally nonsimilar. Numerical calculations up to the third-order level of truncation are carried out for different values of dimensionless parameters as a special case. Effects of the magnetic field strength in the presence of a chemical reaction with a variable wall temperature and concentration on the dimensionless velocity, temperature, and concentration profiles are shown graphically. Comparisons with previously published works are performed, and excellent agreement between the results is obtained.  相似文献   

2.
An analysis is presented to investigate the effects of variable viscosities and thermal stratification on the MHD mixed convective heat and mass transfer of a viscous, incompressible, and electrically conducting fluid past a porous wedge in the presence of a chemical reaction. The wall of the wedge is embedded in a uniform nonDarcian porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically with finite difference methods. Numerical calculations up to the thirdorder level of truncation are carried out for different values of dimensionless parameters. The results are presented graphically, and show that the flow field and other quantities of physical interest are significantly influenced by these parameters. The results are compared with those available in literature, and show excellent agreement.  相似文献   

3.
An analysis is presented to investigate the effects of thermophoresis variable viscosity on MHD mixed convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid past a porous wedge in the presence of chemical reaction. The wall of the wedge is embedded in a uniform porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by local non-similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by using the R.K. Gill and shooting methods. Favorable comparison with previously published work is performed. Numerical results for the dimensionless velocity, temperature and concentration profiles are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.  相似文献   

4.
An analysis is presented to investigate the effects of thermophoresis and variable viscosity on MHD mixed convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid past a porous wedge in the presence of chemical reaction. The wall of the wedge is embedded in a uniform porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by using the R.K. Gill and shooting methods. Favorable comparison with previously published work is performed. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.  相似文献   

5.
An analysis is presented to investigate the effect of thermophoresis particle deposition and temperature dependent viscosity on unsteady non-Darcy mixed convective heat and mass transfer of a viscous and incompressible fluid past a porous wedge in the presence of chemical reaction. The wall of the wedge is embedded in a uniform non-Darcian porous medium in order to allow for possible fluid wall suction or injection. The governing partial differential equations of the problem, subjected to their boundary conditions, are solved numerically by applying an efficient solution scheme for local nonsimilarity boundary layer analysis. Numerical calculations are carried out for different values of dimensionless parameters arising in the problem. The results are compared with available ones in the literature and excellent agreement is obtained. An analysis of the obtained results shows that the flow field is influenced appreciably by the chemical reaction and thermophoresis particle deposition.  相似文献   

6.
Combined heat and mass transfer in free, forced and mixed convection flows along a porous wedge with internal heat generation in the presence of uniform suction or injection is investigated. The boundary-layer analysis is formulated in terms of the combined thermal and solute buoyancy effect. The flow field characteristics are analyzed using the Runge-Kutta-Gill method, the shooting method, and the local nonsimilarity method. Due to the effect of the buoyancy force, power law of temperature and concentration, and suction/injection on the wall of the wedge, the flow field is locally nonsimilar. Numerical calculations up to third-order level of truncation are carried out for different values of dimensionless parameters as a special case. The effects of the buoyancy force, suction, heat generation, and variable wall temperature and concentration on the dimensionless velocity, temperature, and concentration profiles are studied. The results obtained are found to be in good agreement with previously published works.  相似文献   

7.
The steady two-dimensional flow of an incompressible viscous and electrically conducting fluid over a non-linearly semi-infinite stretching sheet in the presence of a chemical reaction and under the influence of a magnetic field is analyzed. The equations governing the flow and concentration field are reduced to a system of coupled non-linear ordinary differential equations. These non-linear differential equations are solved numerically by using the shooting method. The numerical results for the concentration field are presented through graphs.  相似文献   

8.
Thermophoresis particle deposition with chemical reaction on Magnetohydrodynamic flow of an electrically conducting fluid over a porous stretching sheet in the presence of a uniform transverse magnetic field with variable stream conditions is investigated using scaling group transformation. Starting from Navier-Stokes equations and using scaling group transformations, the governing equations are obtained in the form of differential equations. The fluid viscosity is assumed to vary as a linear function of temperature. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity to decrease with the increasing distance of the stretching sheet. At a particular point of the sheet the fluid velocity decreases with the decreasing viscosity but the temperature increases in this case. Impact of thermophoresis particle deposition in the presence of chemical reaction plays an important role on the concentration boundary layer. The results thus obtained are presented graphically and discussed.  相似文献   

9.
The problem of steady, laminar, thermosolutal Marangoni convection flow of an electrically-conducting fluid along a vertical permeable surface in the presence of a magnetic field, heat generation or absorption and a first-order chemical reaction effects is studied numerically. The general governing partial differential equations are converted into a set of self-similar equations using unique similarity transformations. Numerical solution of the similarity equations is performed using an implicit, iterative, tri-diagonal finite-difference method. Comparisons with previously published work is performed and the results are found to be in excellent agreement. Approximate analytical results for the temperature and concentration profiles as well as the local Nusselt and sherwood numbers are obtained for the conditions of small and large Prandtl and Schmidt numbers are obtained and favorably compared with the numerical solutions. The effects of Hartmann number, heat generation or absorption coefficient, the suction or injection parameter, the thermo-solutal surface tension ratio and the chemical reaction coefficient on the velocity, temperature and concentration profiles as well as quantitites related to the wall velocity, boundary-layer mass flow rate and the Nusselt and Sherwood numbers are presented in graphical and tabular form and discussed. It is found that a first-order chemical reaction increases all of the wall velocity, Nusselt and Sherwood numbers while it decreases the mass flow rate in the boundary layer. Also, as the thermo-solutal surface tension ratio is increased, all of the wall velocity, boundary-layer mass flow rate and the Nusselt and Sherwood numbers are predicted to increase. However, the exact opposite behavior is predicted as the magnetic field strength is increased.  相似文献   

10.
An analysis is performed to study the magnetohydrodynamic flow of an electrically conducting, viscous incompressible fluid past a semi-infinite vertical plate with variable surface temperature under the action of transversely applied magnetic field. The heat due to viscous dissipation and the induced magnetic field are assumed to be negligible. The dimensionless governing equations are unsteady, two-dimensional, coupled and non-linear governing equations. It is found that the magnetic field parameter has a retarding effect on the velocities of air and water.  相似文献   

11.
对纳米流体在伸/缩楔体上的磁流体(MHD)流动进行了数值研究。首先,通过相似变换将控制偏微分方程转化为非线性常微分方程组;然后,利用Matlab软件,借助打靶法,结合四阶五常龙格库塔迭代方案进行数值求解;最后,详细讨论了各控制参数对无量纲速度、温度、浓度、表面摩擦系数、局部Nusselt数和局部Sherwood数的影响。结果表明,楔体在拉伸情况下只有唯一解,理论上不会出现边界层分离;而在一定收缩强度范围内存在双解,边界层流动在壁面处可能会出现边界层分离,壁面抽吸会使边界层分离推迟;楔体在拉伸情况下,磁场参数对表面摩擦系数的影响较大,对局部Nusselt数和局部Sherwood数的影响较小。  相似文献   

12.
The objective of the present work is to investigate theoretically the Hiemenz flow and heat transfer of an incompressible viscous nanofluid past a porous wedge sheet in the presence of thermal stratification due to solar energy (incident radiation). The wall of the wedge is embedded in a uniform Darcian porous medium to allow for possible fluid wall suction or injection and has a power–law variation of the wall temperature. The partial differential equations governing the problem under consideration are transformed by a special form of Lie symmetry group transformations viz., one-parameter group of transformation into a system of ordinary differential equations which are solved numerically by Runge–Kutta–Gill-based shooting method. The conclusion is drawn that the flow field and temperature are significantly influenced by convective radiation, thermal stratification, buoyancy force, and porosity of the sheet.  相似文献   

13.
The steady nonlinear hydromagnetic flow of an incompressible, viscous and electrically conducting fluid with heat transfer over a surface of variable temperature stretching with a power-law velocity in the presence of variable transverse magnetic field is analysed. Utilizing similarity transformation, governing nonlinear partial differential equations are transformed to nonlinear ordinary differential equations and they are numerically solved using fourth-order Runge–Kutta shooting method. Numerical solutions are illustrated graphically by means of graphs. The effects of magnetic field, stretching parameter and Prandtl number on velocity, skin friction, temperature distribution and rate of heat transfer are discussed.  相似文献   

14.
The aim of this paper is to examine the Dufour and Soret effects on the two-dimensional magnetohydrodynamic (MHD) steady flow of an electrically conducting viscous fluid bounded by infinite sheets. An incompressible viscous fluid fills the porous space. The mathematical analysis is performed in the presence of viscous dissipation, Joule heating, and a first-order chemical reaction. With suitable transformations, the governing partial differential equations through momentum, energy, and concentration laws are transformed into ordinary differential equations. The resulting equations are solved by the homotopy analysis method (HAM). The convergence of the series solutions is ensured. The effects of the emerging parameters, the skin friction coefficient, the Nusselt number, and the Sherwood number are analyzed on the dimensionless velocities, temperature, and concentration fields.  相似文献   

15.
The objective of the present work is to investigate theoretically the MHD convective flow and heat transfer of an incompressible viscous nanofluid past a porous vertical stretching sheet in the presence of variable stream condition due to solar radiation (incident radiation). The governing equations are derived using the usual boundary-layer and Boussinesq approximations and accounting for the presence of an applied magnetic field and incident radiation flux. The absorbed radiation acts as a distributed source which initiates buoyancy-driven flow and convection in the absorbed layer. The partial differential equations governing the problem under consideration are transformed by a special form of Lie symmetry group transformations viz. one-parameter group of transformation into a system of ordinary differential equations which are solved numerically using Runge Kutta Gill based shooting method. The conclusion is drawn that the flow field and temperature are significantly influenced by radiation, heat source and magnetic field.  相似文献   

16.
The effects of Joule-heating, chemical reaction and thermal radiation on unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid are analyzed. The partial differential equations governing the flow and heat and mass transfer have been solved numerically using an implicit finite-difference scheme. The case corresponding to vanishing of the anti-symmetric part of the stress tensor that represents weak concentrations is considered. The numerical results are validated by favorable comparisons with previously published results. A parametric study of the governing parameters, namely the magnetic field parameter, suction/injection parameter, radiation parameter, chemical reaction parameter, vortex viscosity parameter and the Eckert number on the linear velocity, angular velocity, temperature and the concentration profiles as well as the skin friction coefficient, wall couple stress coefficient, Nusselt number and the Sherwood number is conducted. A selected set of numerical results is presented graphically and discussed.  相似文献   

17.
A technique of the state space approach and the inversion of the Laplace transform method are applied to dimensionless equations of an unsteady one-dimensional boundary-layer flow due to heat and mass transfer through a porous medium saturated with a viscoelastic fluid bounded by an infinite vertical plate in the presence of a uniform magnetic field is described. Complete analytical solutions for the temperature, concentration, velocity, and induced magnetic and electric fields are presented. The inversion of the Laplace transforms is carried out by using a numerical approach. The proposed method is used to solve two problems: boundary-layer flow in a viscoelastic fluid near a vertical wall subjected to the initial conditions of a stepwise temperature and concentration and viscoelastic fluid flow between two vertical walls. The solutions are found to be dependent on the governing parameters including the Prandtl number, the Schmidt number, the Grashof number, reaction rate coefficient, viscoelastic parameter, and permeability of the porous medium. Effects of these major parameters on the transport behavior are investigated methodically, and typical results are illustrated to reveal the tendency of the solutions. Representative results are presented for the velocity, temperature, concentration, and induced magnetic and electric field distributions, as well as the local skin-friction coefficient and the local Nusselt and Sherwood numbers.  相似文献   

18.
An analysis of a second-grade fluid in a semi-porous channel in the presence of a chemical reaction is carried out to study the effects of mass transfer and magnetohydrodynamics. The upper wall of the channel is porous, while the lower wall is impermeable. The basic governing flow equations are transformed into a set of nonlinear ordinary differential equations by means of a similarity transformation. An approximate analytical solution of nonlinear differential equations is constructed by using the homotopy analysis method. The features of the flow and concentration fields are analyzed for various problem parameters. Numerical values of the skin friction coefficient and the rate of mass transfer at the wall are found.  相似文献   

19.
A numerical study is performed to examine the heat transfer characteristics of natural convection past a vertical cone under the combined effects of magnetic field and thermal radiation.The surface of the cone is subjected to a variable surface heat flux.The fluid considered is a gray,absorbing-emitting radiation but a non-scattering medium.With approximate transformations,the boundary layer equations governing the flow are reduced to non-dimensional equations valid in the free convection regime.The dimensionless governing equations are solved by an implicit finite difference method of Crank-Nicolson type which is fast convergent,accurate,and unconditionally stable.Numerical results are obtained and presented for velocity,temperature,local and average wall shear stress,and local and average Nusselt number in air and water.The present results are compared with the previous published work and are found to be in excellent agreement.  相似文献   

20.
The magnetohydrodynamic(MHD) flow of the third grade fluid between two permeable disks with heat transfer is investigated.The governing partial differential equations are converted into the ordinary differential equations by suitable transformations.The transformed equations are solved by the homotopy analysis method(HAM).The expressions for square residual errors are defined,and the optimal values of convergencecontrol parameters are selected.The dimensionless velocity and temperature fields are examined for various dimensionless parameters.The skin friction coefficient and the Nusselt number are tabulated to analyze the effects of dimensionless parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号