首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
15N shielding tensors were determined for the central peptide groups in GGV, AGG, and APG by single-crystal NMR. We find that the angle between the downfield component (delta11) and the N-H or the N-C(delta) (pro) bonds is in the range of 20-23 degrees and in accord with previous solid-state NMR measurements. However, AGG, unlike APG or GGV, has a distorted peptide plane, and delta11 lies approximately in the plane of N, C(alpha), and H rather than in the peptide plane defined by heavy atoms. Accurate orientations of delta22 and delta33 were determined, and the usual assumption that delta22 is along the peptide normal was found only in APG which has a highly nonaxial tensor. More generally, delta22 and delta33 are rotated about the delta11 axis (36 degrees in GGV). These results are compared with DFT calculations to gain a structural understanding of the effects of intermolecular interactions on shielding tensor principal components and orientations. Trimeric clusters containing H-bonded neighbors predict the orientations of the principal components within 2-3 degrees, but calculated principal components are less quantitative. Possible reasons for this disagreement are explored.  相似文献   

2.
We have used solid-state 17O NMR experiments to determine the 17O quadrupole coupling (QC) tensor and chemical shift (CS) tensor for the carbonyl oxygen in p-nitro-[1-(17)O]benzaldehyde. Analyses of solid-state 17O NMR spectra obtained at 11.75 and 21.15 T under both magic-angle spinning (MAS) and stationary conditions yield the magnitude and relative orientation of these two tensors: CQ = 10.7 +/- 0.2 MHz, etaQ = 0.45 +/- 0.10, delta11 = 1050 +/- 10, delta22 = 620 +/- 10, delta33 = -35 +/- 10, alpha = 90 +/- 10, beta = 90 +/- 2, gamma = 90 +/- 10 degrees. The principal component of the 17O CS tensor with the most shielding, delta33, is perpendicular to the H-C=O plane, and the tensor component with the least shielding, delta11, lies along the C=O bond. For the 17O QC tensor, the largest (chi(zz)) and smallest (chi(xx)) components are both in the H-C=O plane being perpendicular and parallel to the C=O bond, respectively. This study represents the first time that these two fundamental 17O NMR tensors have been simultaneously determined for the carbonyl oxygen of an aldehyde functional group by solid-state 17O NMR. The reported experimental solid-state 17O NMR results provide the first set of reliable data to allow evaluation of the effect of electron correlation on individual CS tensor components. We found that the electron correlation effect exhibits significant influence on 17O chemical shielding in directions within the H-C=O plane. We have also carefully re-examined the existing experimental data on the 17O spin-rotation tensor for formaldehyde and proposed a new set of best "experimental" 17O chemical shielding tensor components: sigma11 = -1139 +/- 80, sigma22 = -533 +/- 80, sigma33 = 431 +/- 5, and sigma(iso) = -414 +/- 60 ppm. Using this new set of data, we have evaluated the accuracy of quantum chemical calculations of the 17O CS tensors for formaldehyde at the Hartree-Fock (HF), density-functional theory (DFT), M?ller-Plesset second-order perturbation (MP2), and coupled-cluster singles and doubles (CCSD) levels of theory. The conclusion is that, while results from HF and DFT tend to underestimate the electron correlation effect, the MP2 method overestimates its contribution. The CCSD results are in good agreement with the experimental data.  相似文献   

3.
We have presented a systematic experimental investigation of carboxyl oxygen electric-field-gradient (EFG) and chemical shielding (CS) tensors in crystalline amino acids. Three 17O-enriched amino acids were prepared: L-aspartic acid, L-threonine, and L-tyrosine. Analysis of two-dimensional 17O multiple-quantum magic-angle spinning (MQMAS), MAS, and stationary NMR spectra yields the 17O CS, EFG tensors and the relative orientations between the two tensors for the amino acids. The values of quadrupolar coupling constants (CQ) are found to be in the range of 6.70-7.60 MHz. The values of deltaiso lie in the range of 268-292 ppm, while those of the delta11 and delta22 components vary from 428 to 502 ppm, and from 303 to 338 ppm, respectively. There is a significant correlation between the magnitudes of delta22 components and C--O bond lengths. Since C--O bond length may be related to hydrogen-bonding environments, solid-state 17O NMR has significant potential to provide insights into important aspects of hydrogen bonds in biological systems.  相似文献   

4.
We have presented an experimental investigation of the oxygen-17 chemical shielding (CS) and electric-field-gradient (EFG) tensors for alpha-COOH groups in polycrystalline amino acid hydrochlorides. The 17O CS and EFG tensors including the relative orientations between the two NMR tensors are determined in [17O]-L-phenylalanine hydrochloride and [17O]-L-valine hydrochloride by the analysis of the 17O magic-angle-spinning (MAS) and stationary NMR spectra obtained at 9.4, 11.7, 16.4, and 21.8 T. The quadrupole coupling constants (CQ) and the span of the CS tensors are found to be 8.41-8.55 MHz and 7.35-7.41MHz, and 548-570 ppm and 225-231 ppm, for carbonyl and hydroxyl oxygen atoms, respectively. Extensive quantum chemical calculations using density functional theory (DFT) have been also carried out for a hydrogen-bonding model. It is demonstrated that the behavior of the dependence of hydrogen-bond distances on 17O NMR tensors for the halogen ions is different from those for the water molecule.  相似文献   

5.
We have used single crystal (17)O NMR and density functional theory to investigate intermolecular interactions in a strongly H-bonded system. The chemical shielding (CS) and quadrupole coupling (QC) tensors are determined in oxalic acid dihydrate by single crystal methods. With cross polarization from abundant protons, high quality spectra are obtained in 1-2 min from 10 micromol samples. In the crystal lattice, oxalic acid is H-bonded directly to the hydrate with each carboxyl group accepting two H-bonds at C=O and donating one H-bond from COH. The effects of these intermolecular interactions on the experimentally determined QC and CS tensors are modeled by density functional theory with a procedure that accurately calculates, without scaling, the known QC tensors in both gas-phase water and ice. The ice calculation uses a cluster containing 42 waters (in excess of two complete hydration shells). The same procedure applied to a similarly constructed cluster of hydrated oxalic acid gives QC and CS tensors that are within 3-6% of the observed values while isolated molecule tensors are significantly different. Comparison of the isolated molecule tensors with those from either experiment or the cluster calculation shows the magnitude and directionality of intermolecular interactions on the tensors. The isotropic shift of the COH oxygen is deshielded by 29 ppm, and C=O is shielded by 62 ppm while the spans of the CS tensors are increased by 78 ppm and decreased by 73 ppm, respectively. Magnitudes of the quadrupole coupling constants, which are proportional to the electric field gradients at the (17)O sites, decrease by 2.2 and 1.2 MHz at COH and C=O, respectively.  相似文献   

6.
Li(+) and Ca(2+) binding to the carbonyl oxygen sites of a model peptide system has been studied by (17)O solid-state NMR spectroscopy. (17)O chemical shift (CS) and quadrupole coupling (QC) tensors are determined in four Gly-(Gly-(17)O)-Gly polymorphs by a combination of stationary and fast magic-angle spinning (MAS) methods at high magnetic field, 19.6 T. In the crystal lattice, the carbonyl oxygen of the central glycyl residue in two gly-gly-gly polymorphs form intermolecular hydrogen bonds with amides, whereas the corresponding carbonyl oxygens of the other two polymorphs form interactions with Li(+) and Ca(2+) ions. This permits a comparison of perturbations on (17)O NMR properties by ion binding and intermolecular hydrogen bonding. High quality spectra are augmented by density functional theory (DFT) calculations on large molecular clusters to gain additional theoretical insights and to aid in the spectral simulations. Ion binding significantly decreases the two (17)O chemical shift tensor components in the peptide plane, delta(11) and delta(22), and, thus, a substantial change in the isotropic chemical shift. In addition, quadrupole coupling constants are decreased by up to 1 MHz. The effects of ion binding are found to be almost an order of magnitude greater than those induced by hydrogen bonding.  相似文献   

7.
The peptide hydrates Gly-Gly-Val x 2H(2)O (GGV) and Gly-Ala-Leu x 3H(2)O (GAL) are known to adopt alpha-helical configurations containing waters of hydration in which each water is H-bonded to three or four peptide groups. Herein we report a thermodynamic and solid-state NMR ((2)H and (17)O) study of these peptides. From TGA and DSC, the average enthalpy per H-bond is 15 kJ/mol. The dynamics and average orientation of the hydrate are studied by powder and single-crystal (2)H NMR. Whereas waters that are shown by the X-ray structure to be coordinated by four hydrogen bonds do not yield observable (2)H NMR signals at room temperature, two of the three triply coordinated waters yield residual (2)H quadrupole coupling tensors characteristic of rapid 180 degrees flip motions and the orientation of the residual tensor is that expected from the X-ray structure-derived H-bonding pattern. At -65 degrees C, the flip motions of triply coordinated water in GGV slow into the (2)H NMR intermediate exchange regime whereas the tetrahedrally coordinated water approaches the slow-exchange limit and yields an observable NMR signal. Extensive isotope exchange between water vapor and crystalline GGV establishes the presence of additional hydrate dynamics and solid-state proton transfer along a chain of water-bridged protonated alpha-amino groups.  相似文献   

8.
Solid-state 63Cu and 65Cu NMR experiments have been conducted on a series of inorganic and organometallic copper(I) complexes possessing a variety of spherically asymmetric two-, three-, and four-coordinate Cu coordination environments. Variations in structure and symmetry, and corresponding changes in the electric field gradient (EFG) tensors, yield 63/65Cu quadrupolar coupling constants (CQ) ranging from 22.0 to 71.0 MHz for spherically asymmetric Cu sites. These large quadrupolar interactions result in spectra featuring quadrupolar-dominated central transition patterns with breadths ranging from 760 kHz to 6.7 MHz. Accordingly, Hahn-echo and/or QCPMG pulse sequences were applied in a frequency-stepped manner to rapidly acquire high S/N powder patterns. Significant copper chemical shielding anisotropies (CSAs) are also observed in some cases, ranging from 1000 to 1500 ppm. 31P CP/MAS NMR spectra for complexes featuring 63/65Cu-31P spin pairs exhibit residual dipolar coupling and are simulated to determine both the sign of CQ and the EFG tensor orientations relative to the Cu-P bond axes. X-ray crystallographic data and theoretical (Hartree-Fock and density functional theory) calculations of 63/65Cu EFG and CS tensors are utilized to examine the relationships between NMR interaction tensor parameters, the magnitudes and orientations of the principal components, and molecular structure and symmetry.  相似文献   

9.
Solid-state (17)O NMR spectroscopy is employed to characterize powdered samples of known monoclinic and orthorhombic modifications of (17)O-enriched triphenylphosphine oxide, Ph(3)PO. Precise data on the orientation-dependent (17)O electric field gradient (EFG) and chemical shift (CS) tensors are obtained for both polymorphs. While the (17)O nuclear quadrupolar coupling constants (C(Q)) are essentially identical for the two polymorphs (C(Q) = -4.59 +/- 0.01 MHz (orthorhombic); C(Q) = -4.57 +/- 0.01 MHz (monoclinic)), the spans (Omega) of the CS tensors are distinctly different (Omega = 135 +/- 3 ppm (orthorhombic); Omega = 155 +/- 5 ppm (monoclinic)). The oxygen CS tensor is discussed in terms of Ramsey's theory and the electronic structure of the phosphorus-oxygen bond. The NMR results favor the hemipolar sigma-bonded R(3)P(+)-O(-) end of the resonance structure continuum over the multiple bond representation. Indirect nuclear spin-spin (J) coupling between (31)P and (17)O is observed directly in (17)O magic-angle-spinning (MAS) NMR spectra as well as in (31)P MAS NMR spectra. Ab initio and density-functional theory calculations of the (17)O EFG, CS, and (1)J((31)P,(17)O) tensors have been performed with a variety of basis sets to complement the experimental data. This work describes an interesting spin system for which the CS, quadrupolar, J, and direct dipolar interactions all contribute significantly to the observed (17)O NMR spectra and demonstrates the wealth of information which is available from NMR studies of solid materials.  相似文献   

10.
The phosphorus chemical shift (CS) tensors of several ruthenium carbonyl compounds containing a phosphido ligand, micro), bridging a Ru [bond] Ru bond were characterized by solid-state (31)P NMR spectroscopy. As well, an analogous osmium compound was examined. The structures of most of the clusters investigated have approximate local C(2v) symmetry about the phosphorus atom. Compared to the "isolated" PH(2)(-) anion, the phosphorus nucleus of a bridging phosphido ligand exhibits considerable deshielding. The phosphorus CS tensors of most of the compounds have spans ranging from 230 to 350 ppm and skews of approximately zero. Single-crystal NMR was used to investigate the orientation of the phosphorus CS tensors for two of the compounds, Ru(2)(CO)(6)(mu(2)-C [triple bond] C [bond] Ph)(mu(2)-PPh(2)) and Ru(3)(CO)(9)(mu(2)-H)(mu(2)-PPh(2)). The intermediate component of the phosphorus CS tensor, delta(22), lies along the local C(2) axis in both compounds. The least shielded component, delta(11), lies perpendicular to the Ru [bond] P [bond] Ru plane while the most shielded component, delta(33), lies perpendicular to the C [bond]P [bond] C plane. The orientation of the phosphorus CS tensor for a third compound, Ru(2)(CO)(6)(mu(2)-PPh(2))(2), was investigated by the dipolar-chemical shift NMR technique and was found to be analogous, suggesting it to be the same in all compounds. Ab initio calculations of phosphorus magnetic shielding tensors have been carried out and reproduce the orientations found experimentally. The orientation of the CS tensor has been rationalized using simple frontier MO theory. Splittings due to (99,101)Ru [bond] (31)P spin-spin coupling have been observed for several of the complexes. A rare example of (189)Os [bond] (31)P spin-spin splittings is observed in the (31)P MAS NMR spectrum of the osmium cluster, where (1)J((189)Os, (31)P) is 367 Hz. For this complex, the (189)Os nuclear quadrupolar coupling constant is on the order of several hundred megahertz.  相似文献   

11.
We have carried out an extensive ab initio quantum chemical (QC)43Ca NMR study on a series of Ca-O organic compounds and three different Ca-bound proteins and found that the HF/6-31G* level of function can reliably predict 43Ca NMR interaction parameters (delta(iso) and chi(q)), especially for organic solids. This QC study finds correlations between Ca-O bond environment (mean distance and coordination number) and delta(iso)(43Ca). Although relatively small values of chi(q)(43Ca) are found for Ca-O organic compounds with a coordination number between 6 and 10, the QC shows that chi(q)(43Ca) is sensitive to the Ca-O coordination geometry of the Ca2+ sites in metalloproteins--a potentially important observation. An application of such ab initio QC 43Ca NMR studies is in characterizing the Ca-O bonding environment around target Ca2+ sites. As an example, we propose a new potential analytical approach using the absolute (43)Ca chemical shielding constant to investigate the hydration shell of Ca2+ in a dilute CaCl2 aqueous solution. Furthermore, by adopting a NMR methodology similar to that reported in Wong et al. Chem. Phys. Lett. 2006, 427, 201, natural abundance 43Ca MAS NMR spectra of Ca(L-glutamate)(2) x 4H2O were recorded, and delta(iso)(43Ca) and the quadrupolar parameter (Pq) were estimated to be 6.6 ppm and 0.8 MHz, respectively.  相似文献   

12.
The principal components of zeolite 29Si magnetic shielding tensors have been accurately measured and calculated for the first time. The experiments were performed at an ultrahigh magnetic field of 21.1 T in order to observe the small anisotropies of the 29Si shielding interactions that arise for Si atoms in near-tetrahedral geometries. A robust two-dimensional (2D) chemical shift anisotropy (CSA) recoupling pulse sequence was employed that enables quasi-static powder patterns to be resolved according to the isotropic chemical shifts. For the zeolites Sigma-2 and ZSM-12, it is demonstrated that the 29Si chemical shift (CS) tensor components measured by the recoupling experiment are in excellent agreement with those determined from spinning sidebands in slow magic-angle spinning (MAS) experiments. For the zeolite ZSM-5, the principal components of the 29Si CS tensors of 15 of the 24 Si sites were measured using the 2D CSA recoupling experiment, a feat that would not be possible with a slow MAS experiment due to the complexity of the spectrum. A simple empirical relationship between the 29Si CS tensors and local structural parameters could not be established. However, the 29Si magnetic shielding tensors calculated using Hartree-Fock ab initio calculations on clusters derived from the crystal structures are in excellent agreement with the experimental results. The accuracy of the calculations is strongly dependent on the quality of the crystal structure used in the calculation, indicating that the 29Si magnetic shielding interaction is extremely sensitive to the local structure around each Si atom. It is anticipated that the measurement and calculation of 29Si shielding tensors could be incorporated into the "NMR crystallography" of zeolites and other related silicate materials, possibly being used for structure refinements that may lead to crystal structures with very accurate Si and O atomic coordinates.  相似文献   

13.
Solid-state 93Nb and 13C NMR experiments, in combination with theoretical calculations of NMR tensors, and single-crystal and powder X-ray diffraction experiments, are applied for the comprehensive characterization of structure and dynamics in a series of organometallic niobium complexes. Half-sandwich niobium metallocenes of the forms Cp'Nb(I)(CO)4 and CpNb(V)Cl4 are investigated, where Cp = C5H5- and Cp' = C5H4R- with R = COMe, CO2Me, CO2Et, and COCH2Ph. Anisotropic quadrupolar and chemical shielding (CS) parameters are extracted from 93Nb MAS and static NMR spectra for seven different complexes. It is demonstrated that 93Nb NMR parameters are sensitive to changes in temperature and Cp' ring substitution in the Cp'Nb(I)(CO)4 complexes. There are dramatic differences in the 93Nb quadrupolar coupling constants (C(Q)) between the Nb(I) and Nb(V) complexes, with C(Q) between 1.0 and 12.0 MHz for Cp'Nb(CO)4 and C(Q) = 54.5 MHz for CpNbCl4. The quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) pulse sequence is applied to rapidly acquire, in a piecewise fashion, a high signal-to-noise ultra-wide-line 93Nb NMR spectrum of CpNbCl4, which has a breadth of ca. 400 kHz. Solid-state 93Nb and 13C NMR spectra and powder XRD data are used to identify a new metallocene adduct coordinated at the axial position of the metal site by a THF molecule: CpNb(V)Cl4.THF. 13C MAS and CP/MAS NMR experiments are used to assess the purity of samples, as well as for measuring carbon CS tensors and the rare instance of one-bond 93Nb, 13C J-coupling, 1J(93Nb,13C). Theoretically calculated CS and electric field gradient (EFG) tensors are utilized to determine relationships between tensor orientations, the principal components, and molecular structures.  相似文献   

14.
The proton NMR in single crystals of potassium hydrogen maleate has been sttudied by means of multiple-pulse line-narrowing techniques. The magnetic shielding tensors of all magnetically inequivalent protons in the unit cell could be determined independently. Two of these protons are carboxylic, forming hydrogen bonds. The orientations of the shift tensors are consistent with the position of the hydrogens at the midpoints of the 0–0 intervals. The range of anisotropy of 32 ppm, found for the shift tensor of the caboxylic hydrogen, is larger than that found for hydrogen bonds in acids and seems to be characteristics of acidic salts.The other protons in the unit cell are olefinic. Two features distinguish this type of protons from those studied so far: (1) The magnetic shielding tensor is not even approximately axially symmetric, the principal values being ?2.4, ?5.1, ?7.3 ± 05 ppm (from adamantane); and (2) the principal directions reflect all characteristic directions of the carboncarbon double bond (while the CH direction is of no importance). The principal value in the direction perpendicular to the sp2 system is the least shielded one.  相似文献   

15.
In a strong magnetic field, nuclei located over a carbon-carbon double bond experience NMR shielding effects that are the net result of the magnetic anisotropy of the nearby double bond and various other intramolecular shielding effects. We have used GIAO, a subroutine in Gaussian 4, to calculate isotropic shielding values and to predict the proton NMR shielding increment for a simple model system: methane held in various orientations and positions over ethene. The average proton NMR shielding increments of several orientations of methane have been plotted versus the Cartesian coordinates of the methane protons relative to the center of ethene. A single empirical equation for predicting the NMR shielding experienced by protons over a carbon-carbon double bond has been developed from these data. The predictive capability of this equation has been validated by comparing the shielding increments for several alkenes calculated using our equation to the experimentally observed shielding increments. This equation predicts the NMR shielding effects more accurately than a previous model that was based on only one orientation of methane over ethene. Deshielding is predicted by this equation for protons over the center and within about 3 Å of a carbon-carbon double bond. This result is in contrast to predictions made by the long-held shielding cone model based on the McConnell equation found in nearly every textbook on NMR, but is consistent with experimental observations.  相似文献   

16.
A computational investigation was carried out to characterize the 17O and 1H chemical shielding (CS) tensors in crystalline aspirin. It was found that O–H⋯O and C–H⋯O hydrogen bonds around the aspirin molecule in the crystal lattice have a different influence on the calculated 17O and 1H CS eigenvalues and their orientations in the molecular frame of axes. The calculations were performed with the BLYP, B3LYP, and M06 functionals employing 6-311++G(d,p) standard basis set. Calculated CS tensors were used to evaluate the 17O and 1H chemical shift isotropy (δiso) and anisotropy (Δσ) in crystalline aspirin, which are in reasonable agreement with available experimental data. The difference between the calculated NMR parameters of the monomer and molecular clusters shows how much hydrogen-bonding interactions affect the CS tensors of each nucleus.  相似文献   

17.
18.
The nuclear isotropic shielding constants sigma((17)O) and sigma((13)C) of the carbonyl bond of acetone in water at supercritical (P=340.2 atm and T=673 K) and normal water conditions have been studied theoretically using Monte Carlo simulation and quantum mechanics calculations based on the B3LYP6-311++G(2d,2p) method. Statistically uncorrelated configurations have been obtained from Monte Carlo simulations with unpolarized and in-solution polarized solute. The results show that solvent effects on the shielding constants have a significant contribution of the electrostatic interactions and that quantitative estimates for solvent shifts of shielding constants can be obtained modeling the water molecules by point charges (electrostatic embedding). In supercritical water, there is a decrease in the magnitude of sigma((13)C) but a sizable increase in the magnitude of sigma((17)O) when compared with the results obtained in normal water. It is found that the influence of the solute polarization is mild in the supercritical regime but it is particularly important for sigma((17)O) in normal water and its shielding effect reflects the increase in the average number of hydrogen bonds between acetone and water. Changing the solvent environment from normal to supercritical water condition, the B3LYP6-311++G(2d,2p) calculations on the statistically uncorrelated configurations sampled from the Monte Carlo simulation give a (13)C chemical shift of 11.7+/-0.6 ppm for polarized acetone in good agreement with the experimentally inferred result of 9-11 ppm.  相似文献   

19.
A systematic computational investigation was carried out to characterize the 17O, 14N and 2H electric field gradient, EFG, as well as 17O, 15N, 13C and 1H chemical shielding tensors in the anhydrous chitosan crystalline structure. To include the hydrogen-bonding effects in the calculations, the most probable interacting molecules with the target molecule in the crystalline phase were considered through a hexameric cluster. The computations were performed with the B3LYP method and 6-311++G(d,p) and 6-31++G(d,p) standard basis sets using the Gaussian 98 suite of programs. Calculated EFG and chemical shielding tensors were used to evaluate the 17O, 14N and 2H nuclear quadrupole resonance, NQR, and 17O, 15N, 13C and 1H nuclear magnetic resonance, NMR, parameters in the hexameric cluster, which are in good agreement with the available experimental data. The difference between the calculated NQR and NMR parameters of the monomer and hexamer cluster shows how much hydrogen bonding interactions affect the EFG and chemical shielding tensors of each nucleus. These results indicate that both O(3)-H(33)...O(5-3) and N-H(22)...O(6-4) hydrogen bonding have a major influence on NQR and NMR parameters. Also, the quantum chemical calculations indicate that the intra- and intermolecular hydrogen bonding interactions play an essential role in determining the relative orientation of EFG and chemical shielding principal components in the molecular frame axes.  相似文献   

20.
The torsion angle effect on the isotropic shielding of 17O nucleus in α,β‐unsaturated carbonyl groups is studied by means of density functional theory (DFT) calculations using a polarizable continuum model (PCM) for the solvent, employing the PBE0 functional together with the 6‐311G(d,p) basis set for geometry optimization, and the 6‐311+G(2d,p) basis set for calculating the NMR shielding with the gauge‐including atomic orbitals (GIAO) method. This study adds new information on the sensitivity of the 17O nucleus to conformational changes, revealing a strong dependence of the 17O NMR chemical shift on the dihedral angle between the carbonyl and the vinyl moiety in all studied compounds; remarkable differences are observed with the data reported for α‐diketones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号