首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in L(J; L2Ω)-norm and L2(J; L2Ω)-norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important step towards developing a reliable adaptive mixed finite element approximation for optimal control problems. Finally, the performance of the posteriori error estimators is assessed by two numerical examples.  相似文献   

2.
In this paper, we investigate the L ??(L 2)-error estimates and superconvergence of the semidiscrete mixed finite elementmethods for quadratic optimal control problems governed by linear hyperbolic equations. The state and the co-state are discretized by the order k Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order k(k ?? 0). We derive error estimates for approximation of both state and control. Moreover, we present the superconvergence analysis for mixed finite element approximation of the optimal control problems.  相似文献   

3.
In this article, we investigate the L(L2) ‐error estimates of the semidiscrete expanded mixed finite element methods for quadratic optimal control problems governed by hyperbolic integrodifferential equations. The state and the costate are discretized by the order k Raviart‐Thomas mixed finite element spaces, and the control is approximated by piecewise polynomials of order k(k ≥ 0). We derive error estimates for both the state and the control approximation. Numerical experiments are presented to test the theoretical results. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

4.
This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints. The time discretization is based on the backward Euler method. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. We derive the superconvergence properties of finite element solutions. By using the superconvergence results, we obtain recovery type a posteriori error estimates. Some numerical examples are presented to verify the theoretical results.  相似文献   

5.
In this paper, we present an a posteriori error analysis for finite element approximation of distributed convex optimal control problems. We derive a posteriori error estimates for the coupled state and control approximations under some assumptions which hold in many applications. Such estimates, which are apparently not available in the literature, can be used to construct reliable adaptive finite element approximation schemes for control problems. Explicit estimates are obtained for some model problems which frequently appear in real-life applications.  相似文献   

6.
We investigate the spectral approximation of optimal control governed by Stokes equations with integral state constraint. A good choice for basis functions leads the discrete system with sparse matrices. The optimality conditions are derived, a priori and a posteriori error estimates are presented in both H1 and L2 norms. Numerical experiment indicates the high precision can be achieved with the proposed method.  相似文献   

7.
In this paper, we investigate the superconvergence property and a posteriori error estimates of mixed finite element methods for a linear elliptic control problem with an integral constraint. The state and co-state are approximated by the order k = 1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Approximations of the optimal control of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that these approximations have convergence order h 2. Moreover, we derive a posteriori error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

8.
Lin  Xiuxiu  Chen  Yanping  Huang  Yunqing 《Numerical Algorithms》2020,83(3):1145-1169

In this paper, we investigate a distributed optimal control problem governed by elliptic partial differential equations with L2-norm constraint on the state variable. Firstly, the control problem is approximated by hp spectral element methods, which combines the advantages of the finite element methods with spectral methods; then, the optimality conditions of continuous system and discrete system are presented, respectively. Next, hp a posteriori error estimates are derived for the coupled state and control approximation. In the end, a projection gradient iterative algorithm is given, which solves the optimal control problems efficiently. Numerical experiments are carried out to confirm that the numerical results are in good agreement with the theoretical results.

  相似文献   

9.
This survey article considers discrete approximations of an optimal control problem in which the controlled state equation is described by a general class of stochastic functional differential equations with a bounded memory. Specifically, three different approximation methods, namely (i) semidiscretization scheme; (ii) Markov chain approximation; and (iii) finite difference approximation, are investigated. The convergence results as well as error estimates are established for each of the approximation methods.  相似文献   

10.
Summary. In this paper, we derive a posteriori error estimates for the finite element approximation of quadratic optimal control problem governed by linear parabolic equation. We obtain a posteriori error estimates for both the state and the control approximation. Such estimates, which are apparently not available in the literature, are an important step towards developing reliable adaptive finite element approximation schemes for the control problem. Received July 7, 2000 / Revised version received January 22, 2001 / Published online January 30, 2002 RID="*" ID="*" Supported by EPSRC research grant GR/R31980  相似文献   

11.
In this paper, we derive a posteriori error estimates for finite element approximations of the optimal control problems governed by the Stokes-Darcy system. We obtain a posteriori error estimators for both the state and the control based on the residual of the finite element approximation. It is proved that the a posteriori error estimate provided in this paper is both reliable and efficient.  相似文献   

12.
The Ciarlet–Raviart mixed finite element approximation is constructed to solve the constrained optimal control problem governed by the first bi-harmonic equation. The optimality conditions consisting of the state and the co-state equations is derived. Also, the a priori error estimates are analyzed. In the analysis of the a priori error estimates, the improved convergent rate of the higher order than existed results is proved. Some numerical experiments are performed to confirm the theoretical analysis for the a priori error estimate.  相似文献   

13.
This paper is aimed at studying finite element discretization for a class of quadratic boundary optimal control problems governed by nonlinear elliptic equations. We derive a posteriori error estimates for the coupled state and control approximation. Such estimates can be used to construct a reliable adaptive finite element approximation for the boundary optimal control problem. Finally, we present a numerical example to confirm our theoretical results.  相似文献   

14.
Wei Gong  Michael Hinze  Zhaojie Zhou 《PAMM》2014,14(1):877-878
In this paper we investigate a space-time finite element approximation of parabolic optimal control problems. The first order optimality conditions are transformed into an elliptic equation of fourth order in space and second order in time involving only the state or the adjoint state in the space-time domain. We derive a priori and a posteriori error estimates for the time discretization of the state and the adjoint state. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.  相似文献   

16.
We consider linear-quadratic problems of optimal control with an elliptic state equation and control constraints. For a discretization of the state equation by the method of Finite Differences and a piecewise approximation of the control we develop error estimates for the solution of the discrete problem and, based on the optimality conditions, we construct a new feasible control for which we derive error estimates of quadratic order.  相似文献   

17.
In this paper, we study the numerical methods for optimal control problems governed by elliptic PDEs with pointwise observations of the state. The first order optimality conditions as well as regularities of the solutions are derived. The optimal control and adjoint state have low regularities due to the pointwise observations. For the finite dimensional approximation, we use the standard conforming piecewise linear finite elements to approximate the state and adjoint state variables, whereas variational discretization is applied to the discretization of the control. A priori and a posteriori error estimates for the optimal control, the state and adjoint state are obtained. Numerical experiments are also provided to confirm our theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we consider the finite element approximation of an elliptic optimal control problem. Based on an assumption on the adjoint state of the continuous problem with a small parameter, which represents a regularization of the bang-bang type control problem, we derive robust a priori error estimates for optimal control and state and a posteriori error estimate is also presented. Numerical experiments confirm our theoretical results.  相似文献   

19.
We look at L -error estimates for convex quadratic optimal control problems governed by nonlinear elliptic partial differential equations. In so doing, use is made of mixed finite element methods. The state and costate are approximated by the lowest order Raviart-Thomas mixed finite element spaces, and the control, by piecewise constant functions. L -error estimates of optimal order are derived for a mixed finite element approximation of a semilinear elliptic optimal control problem. Finally, numerical tests are presented which confirm our theoretical results.  相似文献   

20.
In this paper, we consider the finite element approximation of an elliptic optimal control problem. Based on an assumption on the adjoint state of the continuous problem with a small parameter, which represents a regularization of the bang–bang type control problem, we derive robust a priori error estimates for optimal control and state and a posteriori error estimate is also presented. Numerical experiments confirm our theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号