首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu LS  Xu XQ  Huang L  Ling JM  Chen GN 《Electrophoresis》2008,29(3):726-733
A selective and sensitive method of microemulsion EKC (MEEKC) with electrochemical detection (ED) was developed for separation and determination of 14 flavonoids. In order to obtain the better stability for the studied flavonoids, oil (ethyl acetate) with low interfacial surface tension was employed as organic solvent. A running buffer composed of 0.9% (w/v, 30 mM) SDS, 0.9% (w/v, 21 mM) sodium cholate (SC), 0.9% (w/v, 121 mM) butan-1-ol, 0.6% (w/v, 68 mM) ethyl acetate, and 98.2% v/v 10 mM Na(2)B(4)O(7)-20 mM H(3)BO(3) buffer (pH 7.5) was applied for the separation of flavonoids. Under the optimum conditions, the relationship between peak currents and analyte concentrations was linear over about 1.3 and 1.7 orders of magnitude with detection limits (defined as S/N = 3) ranging from 0.02 to 0.5 microg/mL for all analytes. This method was applied for the determination of flavonoids in real samples with simple extraction procedures, and the assay results were satisfactory.  相似文献   

2.
The operating parameters that affect the performance of the online preconcentration technique “analyte focusing by micelle collapse‐MEKC (AFMC‐MEKC)” were examined using a multivariate approach involving experimental design to determine the sunscreen agents in cosmetics. Compared to the single‐variable approach, the advantage of the multivariate approach was that many factors could be investigated simultaneously to obtain the best separation condition. A fractional factorial design was used to identify the fewest significant factors in the central composite design (cCD). The cCD was adopted for evaluating the location of the minimum or maximum response in this study. The influences of the experimental variables on the response were investigated by applying a chromatographic exponential function. The optimized condition and the relationship between the experimental variables were acquired using the JMP software. The ANOVA analysis indicated that the Tris pH value, SDS concentration, and ethanol percentage influenced the separation quality and significantly contributed to the model. The optimized condition of the running buffer was 10 mM Tris buffer (pH 9.5) containing 60 mM SDS, 7 mM γ‐CD, and 20% v/v ethanol. The sample was prepared in 100 mM Tris buffer (pH 9.0) containing 7.5 mM SDS and 20% v/v ethanol. The SDS concentration in the sample matrix was slightly greater than the CMC value that makes the micelle be easily collapsed and the analytes be accumulated in the capillary. In addition, sunscreen agents in cosmetics after 1000‐fold dilution were successfully determined by AFMC‐MEKC.  相似文献   

3.
Norton D  Rizvi SA  Shamsi SA 《Electrophoresis》2006,27(21):4273-4287
The CEC-MS of alkyltrimethylammonium (ATMA+) ions with chain lengths ranging from C1-C18 is optimized using an internally tapered column packed with mixed mode reversed phase/strong cation exchange stationary phase. A systematic study of the CEC separation parameters is conducted followed by evaluation of the ESI-MS sheath liquid and spray chamber settings. First, the optimization of CEC separation parameters are performed including the ACN concentration, triethylamine (TEA) content, buffer pH and ammonium acetate concentration. Using 90% v/v ACN with 0.04% v/v TEA as mobile phase, the separation of longer chain C6-C18-TMA+ surfactants could be achieved in 15 min. Lowering the ACN concentration to 70% v/v provided resolution of shorter chain C1, C2-TMA+ from C6-TMA+ although the total analysis time increased to 40 min. Furthermore, variation of both the ACN and TEA content as well as ionic strength has found to significantly influence the retention of longer chain surfactants as compared to shorter chains. The optimum CEC conditions are 70% v/v ACN, 0.04% v/v TEA, pH 3.0 and 15 mM ammonium acetate. Next, the optimization of the ESI-MS sheath liquid composition is conducted comparing methanol to isopropanol followed by the use of experimental design for analysis of spray chamber parameters. Overall, the developed CEC-ESI-MS method allows quantitative and sensitive monitoring of ATMA+ from < or =10 microg/mL down to 10 ng/mL. Utilizing the optimized CEC-ESI-MS protocol, the challenging analysis of commercial sample Arquad S-50 ATMA+ containing cis-trans unsaturated and saturated soyabean fatty acid derivatives is demonstrated.  相似文献   

4.
5.
A capillary zone electrophoretic method was developed for the separation of the high-ceiling loop diuretic Torasemide and three of its metabolites (M1, M3 and M5) using an experimental design approach. Two different experimental designs were employed to optimize the developed method: (i) a fractional factorial design examining six factors at two levels (2(6-2)) and (ii) a central composite design examining two factors at two levels (2(2)+2x2+p). The factors studied were: pH, buffer concentration, proportion of boric acid in the mixed boric acid:potassium dihydrogen phosphate background electrolyte, temperature, applied voltage and percentage of organic modifier. Resolution between peaks was established as response. Separation of the four studied compounds was achieved in less than 8 min, using an electrolyte of 20 mM boric acid:potassium dihydrogen phosphate (75:25 v/v) with 15% MeOH adjusted to pH 9.7 with KOH, at a potential of 28 kV. Detection wavelength and temperature were 206 nm and 35 degrees C, respectively.  相似文献   

6.
A capillary zone electrophoresis (CZE) method has been developed for simultaneous determination of eukovoside, cinnamic acid and ferulic acid in Euphrasia regelii for the first time. The electrophoresis buffer was 20 mmol/L sodium borate containing 10% (v/v) methanol (pH 8.50). The effects of concentration of borate and electrolyte pH on electrophoretic behavior and separation were studied. Regression equations revealed linear relationships (correlation coefficients 0.9995-0.9998) between the peak area of each analyte and the concentration. The levels of analytes in the different parts of Euphrasia regelii were easily determined with recoveries ranging from 95.5 to 104.2%.  相似文献   

7.
Hou J  Zheng J  Rizvi SA  Shamsi SA 《Electrophoresis》2007,28(9):1352-1363
In this work, simultaneous separation of eight stereoisomers of ephedrine and related compounds ((+/-)-ephedrine, (+/-)-pseudoephedrine, (+/-)-norephedrine and (+/-)-N-methylephedrine) was accomplished using a polymeric chiral surfactant, i.e. polysodium N-undecenoxycarbonyl-L-leucinate (poly-L-SUCL) by chiral (C)MEKC-ESI-MS. The conditions of CMEKC were first investigated. The baseline separation of all eight stereoisomers of ephedrine and related compounds was achieved under optimum CMEKC conditions (35 mM poly-L-SUCL, 15 mM NH(4)OAc, pH 6.0, 30% v/v ACN, 30 kV and 20 degrees C) in less than 30 min. Next, a central composite design for response surface modeling has been described to evaluate the electrospray chamber parameters and the sheath liquid conditions. Optimum mass abundance of stereoisomers of ephedrine and related compounds was observed using the spray chamber parameters, namely 250 degrees C drying gas temperature and 8 L/min drying gas flow rate at a nebulizer pressure of 4 psi. Furthermore, the experimental design indicates that the optimum mass abundance of the stereoisomers of ephedrine and related compounds can be obtained using a sheath liquid containing 80:20 v/v methanol-water, 5 mM NH(4)OAc at pH 8.5 delivered at 5 microL/min. Finally, compared to MEKC-UV, the use of poly-L-SUCL in MEKC-MS provided significantly higher sensitivity for stereoisomers of ephedrine and related compounds.  相似文献   

8.
This paper introduces a design of experiments (DOE) approach for method optimisation in hydrophilic interaction chromatography (HILIC). An optimisation strategy for the separation of acetylsalicylic acid, its major impurity salicylic acid and ascorbic acid in pharmaceutical formulations by HILIC is presented, with the aid of response surface methodology (RSM) and Derringer's desirability function. A Box-Behnken experimental design was used to build the mathematical models and then to choose the significant parameters for the optimisation by simultaneously taking both resolution and retention time as the responses. The refined model had a satisfactory coefficient (R2>0.92, n=27). The four independent variables studied simultaneously were: acetonitrile content of the mobile phase, pH and concentration of buffer and column temperature each at three levels. Of these, the concentration of buffer and its cross-product with pH had a significant, positive influence on all studied responses. For the test compounds, the best separation conditions were: acetonitrile/22 mM ammonium acetate, pH 4.4 (82:18, v/v) as the mobile phase and column temperature of 28°C. The methodology also captured the interaction between variables which enabled exploration of the retention mechanism involved. It would be inferred that the retention is governed by a compromise between hydrophilic partitioning and ionic interaction. The optimised method was further validated according to the ICH guidelines with respect to linearity and range, precision, accuracy, specificity and sensitivity. The robustness of the method was also determined and confirmed by overlying counter plots of responses which were derived from the experimental design utilised for method optimisation.  相似文献   

9.
A chemometric approach was applied for the optimization of the extraction and separation of the antihypertensive drug valsartan and its metabolite valeryl-4-hydroxy-valsartan from human plasma samples. Due to the high number of experimental and response variables to be studied, fractional factorial design (FFD) and central composite design (CCD) were used to optimize the HPLC-UV-fluorescence method. First, the significant variables were chosen with the help of FFD; then, a CCD was run to obtain the optimal values for the significant variables. The measured responses were the corrected areas of the two analytes and the resolution between the chromatographic peaks. Separation of valsartan, its metabolite valeryl-4-hydroxy-valsartan and candesartan M1, used as internal standard, was made using an Atlantis dC18 100 mm x 3.9 mm id, 100 angstroms, 3 microm chromatographic column. The mobile phase was run in gradient elution mode and consisted of ACN with 0.025% TFA and a 5 mM phosphate buffer with 0.025% TFA at pH 2.5. The initial percentage of ACN was 32% with a stepness of 4.5%/min to reach the 50%. A flow rate of 1.30 mL/min was applied throughout the chromatographic run, and the column temperature was kept to 40+/-0.2 degrees C. In the SPE procedure, experimental design was also used in order at achieve a maximum recovery percentage and extracts free from plasma interferences. The extraction procedure for spiked human plasma samples was carried out using C8 cartridges, phosphate buffer (pH 2, 60 mM) as conditioning agent, a washing step with methanol-phosphate buffer (40:60 v/v), a drying step of 8 min, and diethyl ether as eluent. The SPE-HPLC-UV-fluorescence method developed allowed the separation and quantitation of valsartan and its metabolite from human plasma samples with an adequate resolution and a total analysis time of 1 h.  相似文献   

10.
Yu L  Ye H  Zheng L  Chen L  Chu K  Liu X  Xu X  Chen G 《Electrophoresis》2011,32(2):218-222
A new method for separation and determination of amygdalin and its epimer (neoamygdalin) in the epimerization of amygdalin by MEEKC is proposed. For the chiral separation of amygdalin and neoamygdalin, a running buffer composed of 80 mM sodium cholate, 5.0% v/v butan‐1‐ol, 0.5% v/v heptane and 94.5% v/v 30 mM Na2B4O7 buffer (pH 9.00) is proposed. Under optimum conditions, the basic separation of amygdalin and neoamygdalin can be achieved within 7 min. The calibration curve for amygdalin showed excellent linearity in the concentration range of 20–1000 μg/mL with a detection limit of 5.0 μg/mL (S/N=3). The epimerization rate constant of amygdalin in basic microemulsion was first determined by monitoring the concentration changes of amygdalin, and the epimerization rate constant of amygdalin was found to be 2×10?3 min?1 at 25°C under the above optimum microemulsion conditions.  相似文献   

11.
The aim of this work is the development, validation and application of an MEKC method for the chiral separation of Huperzine A. Huperzine A is an important compound that is used to treat Alzheimer's disease. However, only the (?)‐form of this compound is biologically active and behaves as a potential acetylcholinesterase inhibitor. Therefore, the separation of the (?)‐form from the (+)‐form is of greatest importance. Optimal conditions, regarding resolution and analysis time, were established by altering several experimental parameters, such as temperature, field strength, pH, type and concentration of BGE and chiral selector. A major problem that had to be solved in this study was the low intensity and efficiency of the peaks. More parameters were examined, such as the addition of modifiers, to optimize further the separation, and particularly the efficiency. Baseline enantioseparation was achieved by using a BGE of 50 mM acetate (pH 5.0), supplemented with 0.2% w/v poly(sodium N‐undecanoyl‐ll ‐alanyl‐valinate) and 10% v/v tert‐butanol. Finally, the optimum conditions were applied to a pharmaceutical formulation, to demonstrate the ability of the method to control the purity of the (?)‐Huperzine A in pharmaceutical formulations.  相似文献   

12.
The separation of several insect oostatic peptides (IOPs) was achieved by using CEC with a strong-cation-exchange (SCX) stationary phase in the fused-silica capillary column of 75 microm id. The effect of organic modifier, ionic strength, buffer pH, applied voltage, and temperature on peptides' resolution was evaluated. Baseline separation of the studied IOPs was achieved using a mobile phase containing 100 mM pH 2.3 sodium phosphate buffer/water/ACN (10:20:70 v/v/v). In order to reduce the analysis time, experiments were performed in the short side mode where the stationary phase was packed for 7 cm only. The selection of the experimental parameters strongly influenced the retention time, resolution, and retention factor. An acidic pH was selected in order to positively charge the analyzed peptides, the pI's of which are about 3 in water buffer solutions. A good selectivity and resolution was achieved at pH <2.8; at higher pH the three parameters decreased due to reduced or even zero charge of peptides. The increase in the ionic strength of the buffer present in the mobile phase caused a decrease in retention factor for all the studied compounds due to the decreased interaction between analytes and stationary phase. Raising the ACN concentration in the mobile phase in the range 40-80% v/v caused an increase in both retention factor, retention time, and resolution due to the hydrophilic interactions of IOPs with free silanols and sulfonic groups of the stationary phase.  相似文献   

13.
纳米SiO_2分离富集-火焰原子吸收法测定水中痕量银   总被引:4,自引:0,他引:4  
研究了纳米SiO_2分离富集-火焰原子吸收法测定水中痕量银的新方法.考察了溶液pH、吸附时间、洗脱条件和干扰离子等因素对Ag~+分离富集的影响,确定了纳米SiO_2对Ag~+吸附的最佳条件.结果表明:在pH 4.1时,纳米SiO_2能定量吸附银,吸附在纳米SiO_2上的Ag~+可用0.5 mol/L HCl+0.5 mol/L硫脲定量洗脱.该法对银的检出限为0.77 ng/mL(3σ,n=11);线性范围为0.005~1.5μg/mL,对0.5μg/mL的Ag~+标液进行7次测定,RSD为3.6%,回收率在94.0%~101.5%之间;方法可用于环境水样中痕量银的测定.  相似文献   

14.
A HPLC method, using photochemically-induced fluorescence detection, is described for the separation and determination of four phenylurea herbicides including diuron, isoproturon, linuron and neburon. A post-column photoreactor, consisting of a reactor knitted around a 4 W xenon lamp, has been included between the column and the detector, in order to transform the non-fluorescent herbicides into fluorophors. The influence of mobile phase composition, flow-rate, pH, and buffer concentration has been studied. An acetonitrile–buffer solution of potassium phosphate dibasic of pH 7 and 0.01 M concentration (60:40, v/v), was selected as optimum. For the fluorimetric detection, optimal excitation/emission wavelengths 324/403, 301/433, 335/411 and 326/385 nm were selected for the determination of diuron, isoproturon, linuron and neburon, respectively. The detection limits ranged between 0.07 and 0.46 μg/ml, according to the compound.  相似文献   

15.
A simple, rapid method using CE and microchip electrophoresis with C4D has been developed for the separation of four nonsteroidal anti-inflammatory drugs (NSAIDs) in the environmental sample. The investigated compounds were ibuprofen (IB), ketoprofen (KET), acetylsalicylic acid (ASA), and diclofenac sodium (DIC). In the present study, we applied for the first time microchip electrophoresis with C4D detection to the separation and detection of ASA, IB, DIC, and KET in the wastewater matrix. Under optimum conditions, the four NSAIDs compounds could be well separated in less than 1 min in a BGE composed of 20 mM His/15 mM Tris, pH 8.6, 2 mM hydroxypropyl-beta-cyclodextrin, and 10% methanol (v/v) at a separation voltage of 1000–1200 V. The proposed method showed excellent repeatability, good sensitivity (LODs ranging between 0.156 and 0.6 mg/L), low cost, high sample throughputs, portable instrumentation for mobile deployment, and extremely lower reagent and sample consumption. The developed method was applied to the analysis of pharmaceuticals in wastewater samples with satisfactory recoveries ranging from 62.5% to 118%.  相似文献   

16.
A fast method of determining ascorbic acid and isoascorbic acid by capillary zone electrophoresis with a photodiode array detector was developed. Response surface methodologies based on three-level, three-variable designs, such as the Box-Behnken design, central composite face-centered and full fractional design, were used comparatively for optimization of buffer pH, buffer concentration and operation voltage. Statistical interpretation of the variables concerning different responses, such as resolution and migration time of the last migrated analyte, were performed. The optimum conditions of these variables were predicted using a second-order polynomial model fitted to the results obtained by applying three designs. The response surface plots using three experimental designs revealed a separation optimum with Tris–HCl buffer of pH 8.5, a concentration of 50 mM, and an operation voltage of 30 kV. The significance of the statistical designs were confirmed by the generally good agreement obtained between predicted responses and actual experimental data. We concluded that experimental designs offer a rapid means of optimizing several variables and provide an efficient test for the robustness of the analytical method.  相似文献   

17.
The chemometrics approach was applied for the separation optimization of flavonoid markers (quercetin, hesperetin and chrysin) in honey using micellar liquid chromatography (MLC). The investigated method combines SPE of flavonoids from honey using C18 cartridge and their separation and quantification by micellar liquid chromatography. A two level full factorial design was carried out to evaluate the effect of four experimental factors including concentration of SDS, alkyl chain length of the alcohol used as the organic modifier (N), volume percentage of the organic modifier (Vm) and volume percentage of acetic acid (AcOH) in mobile phase on analytes retention times. Experiments for analytes retention times modeling and optimization of separation were performed according to central composite design. Multiple linear regression method was used for the construction of the best model based on experimental retention times. Pareto optimal method was used to find suitable compatibility between resolution and analysis time of analytes in honey. The optimum mobile phase composition for separation and determination of analytes in honey were [SDS]=0.124 mol/L; 7.8% v/v ethanol and 5.0% v/v AcOH. Limits of detection and linear range of flavonoid markers were 0.0079–0.0126, 0.05–50.0 mg/L, respectively.  相似文献   

18.
Experimental design method was used for HPLC determination of irbesartan and hydrochlorothiazide in combined dosage forms. The traditional approach for optimization of experiments is time-consuming, involves a large number of runs and does not allow establishing the multiple interacting parameters. The main advantages of the experimental design method include the simultaneous screening of a larger number of factors affecting response and the estimation of possible interactions. On the basis of preliminary experiments, three factors-independent variables were selected as inputs (methanol content, pH of the mobile phase and temperature) and as dependent variables, five responses (resolution, symmetry of irbesartan peak, symmetry of hydrochlorothiazide peak, retention factor of irbesartan and retention factor of hydrochlorothiazide) were chosen. A full 23 factorial design, where factors were examined at two different levels ("low" and "high") was used to determine which factors had an effect on the studied response. Afterwards, experimental design was used to optimize these influent parameters in the previously selected experimental domain. The novelty of our method lies in the optimization step accomplished by Derringer's desirability function. After optimizing the experimental conditions a separation was conducted on a Supelcosil C(18) (150 mm × 4.6 mm, 5 mm particle size) column with a mobile phase consisting of methanol-tetrahydrofuran-acetate buffer 47:10:43 v/v/v, pH 6.5 and a column temperature of 25 °C. The developed method was successfully applied to the simultaneous separation of these drug-active compounds in their commercial pharmaceutical dosage forms.  相似文献   

19.
Experimental design methodologies are applied to the development of a capillary zone electrophoretic method for the separation of the angiotensin-converting enzyme inhibitor enalapril and its derivative enalaprilat and the diuretics xipamide and hydrochlorothiazide. The effects of pH, buffer concentration, proportion of boric acid in the mixed boric acid-potassium dihydrogen phosphate background electrolyte, temperature, applied voltage, and percentage of organic modifier are studied. Critical factors are identified in a screening design (a 2(6-2) fractional factorial design), and afterwards, optimal conditions for the separation are reached by means of an optimization design (a 2(2) + 2 x 2 + k central composite design). The studied response is the resolution between peaks. The four studied compounds can be separated in less than 3.5 min using an electrolyte of 20mM boric acid-potassium dihydrogen phosphate (75:25, v/v) with 5% MeOH adjusted to pH 8.0 with KOH, at a potential of 30 kV. The detection wavelength and temperature are 206 nm and 35 degrees C, respectively.  相似文献   

20.
An optimization strategy for the separation of an acidic mixture by employing a monolithic stationary phase is presented, with the aid of experimental design and response surface methodology (RSM). An orthogonal array design (OAD) OA(16) (2(15)) was used to choose the significant parameters for the optimization. The significant factors were optimized by using a central composite design (CCD) and the quadratic models between the dependent and the independent parameters were built. The mathematical models were tested on a number of simulated data set and had a coefficient of R(2) > 0.97 (n = 16). On applying the optimization strategy, the factor effects were visualized as three-dimensional (3D) response surfaces and contour plots. The optimal condition was achieved in less than 40 min by using the monolithic packing with the mobile phase of methanol/20 mM phosphate buffer pH 2.7 (25.5/74.5, v/v). The method showed good agreement between the experimental data and predictive value throughout the studied parameter space and were suitable for optimization studies on the monolithic stationary phase for acidic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号