首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rebinding kinetics of CO to protoheme (FePPIX) in the presence and absence of a proximal imidazole ligand reveals the magnitude of the rebinding barrier associated with proximal histidine ligation. The ligation states of the heme under different solvent conditions are also investigated using both equilibrium and transient spectroscopy. In the absence of imidazole, a weak ligand (probably water) is bound on the proximal side of the FePPIX-CO adduct. When the heme is encapsulated in micelles of cetyltrimethylammonium bromide (CTAB), photolysis of FePPIX-CO induces a complicated set of proximal ligation changes. In contrast, the use of glycerol-water solutions leads to a simple two-state geminate kinetic response with rapid (10-100 ps) CO recombination and a geminate amplitude that can be controlled by adjusting the solvent viscosity. By comparing the rate of CO rebinding to protoheme in glycerol solution with and without a bound proximal imidazole ligand, we find the enthalpic contribution to the proximal rebinding barrier, H(p), to be 11 +/- 2 kJ/mol. Further comparison of the CO rebinding rate of the imidazole bound protoheme with the analogous rate in myoglobin (Mb) leads to a determination of the difference in their distal free energy barriers: DeltaG(D) approximately 12 +/- 1 kJ/mol. Estimates of the entropic contributions, due to the ligand accessible volumes in the distal pocket and the xenon-4 cavity of myoglobin ( approximately 3 kJ/mol), then lead to a distal pocket enthalpic barrier of H(D) approximately 9 +/- 2 kJ/mol. These results agree well with the predictions of a simple model and with previous independent room-temperature measurements of the enthalpic MbCO rebinding barrier (18 +/- 2 kJ/mol).  相似文献   

2.
Ultrafast kinetic measurements of NO rebinding to horseradish peroxidase (HRP) are reported for the first time. The geminate kinetics are found to be exponential for all HRP samples studied. The ferric forms of HRP have NO geminate recombination time constants in the range of 15-30 ps, while the ferrous form has a time constant of approximately 7 ps. The simple exponential NO geminate kinetics found for HRP demonstrate that heme relaxation is not the underlying source of the nonexponential NO rebinding in myoglobin (Mb). The NO ligand escape rates from HRP are also determined, and they are found to depend dramatically on the presence or absence of the competitive inhibitor benzohydroxamic acid (BHA). The kinetic results indicate that, in contrast to Mb, there is direct solvent access to the distal heme pocket of HRP.  相似文献   

3.
The recombination dynamics of NO with dehaloperoxidase (DHP) from Amphitrite ornata following photolysis were measured by femtosecond time-resolved absorption spectroscopy. Singular value decomposition (SVD) analysis reveals two important basis spectra. The first SVD basis spectrum reports on the population of photolyzed NO molecules and has the appearance of the equilibrium difference spectrum between the deoxy and NO forms of DHP. The first basis time course has two kinetic components with time constants of tau(11) approximately 9 ps and tau(12) approximately 50 ps that correspond to geminate recombination. The fast geminate process tau(11) arises from a contact pair with the heme iron in a bound state with S = 3/2 spin. The slow geminate process tau(12) corresponds to the recombination from a more remote docking site >3 A from the heme iron with the greater barrier corresponding to a S = 5/2 spin state. The second SVD basis spectrum represents a time-dependent Soret band shift indicative of heme photophysical processes and protein relaxation with time constants of tau(21) approximately 3 ps and tau(22) approximately 17 ps, respectively. A comparison between the more rapid rate constant of the slow geminate phase in DHP-NO and horse heart myoglobin (HHMbNO) or sperm whale myoglobin (SWMbNO) suggests that protein interactions with photolyzed NO are weaker in DHP than in the wild-type MbNOs, consistent with the hydrophobic distal pocket of DHP. The slower protein relaxation rate tau(22) in DHP-NO relative to HHMbNO implies less effective trapping in the docking site of the distal pocket and is consistent with a greater yield for the fast geminate process. The trends observed for DHP-NO also hold for the H64V mutant of SWMb (H64V MbNO), consistent with a more hydrophobic distal pocket for that protein as well. We examine the influence of solution viscosity on NO recombination by varying the glycerol content in the range from 0% to 90% (v/v). The dominant effect of increasing viscosity is the increase of the rate of the slow geminate process, tau(12), coupled with a population decrease of the slow geminate component. Both phenomena are similar to the effect of viscosity on wild-type Mb due to slowing of protein relaxation resulting from an increased solution viscosity and protein surface dehydration.  相似文献   

4.
The (t approximately 0) photodissociation quantum yields (Y(0)) of MbNO and MbO(2) are measured to be 50 +/- 5 and 28 +/- 6%, respectively, using MbCO (Y(0) = 100%) as a reference. When photolysis does not take place, we find that a significant portion of the photon energy contributes to heating of the residual six-coordinate heme (MbNO and MbO(2)). The time constant for vibrational relaxation of the six-coordinate ligand-bound heme is found to be close to 1 ps for both samples. The MbO(2) sample also shows a approximately 4-ps optical response that is assigned to a rapid phase (25-30% amplitude) of O(2) geminate rebinding. We observe no additional geminate recombination in the MbO(2) sample out to 120 ps. In contrast, the MbNO sample displays significant geminate recombination over the first 120 ps, which can be adequately fit with two exponentials whose amplitudes and time constants appear to depend weakly on the pump wavelength. This more complex kinetic behavior conceivably arises due to heating of the photodissociated heme and its effect on the geminate recombination as the system cools. Overall, the data are consistent with a hypothesis that distortions along the iron-ligand bending coordinate play a key role in the photodissociation process. The transient formation of an unphotolyzable FeO(2) side-on binding geometry is suggested to be responsible for the lowered quantum yield of MbO(2) relative to MbNO.  相似文献   

5.
The dynamics of processes relevant to chemistry and biophysics on rough free energy landscapes is investigated using a recently developed algorithm to solve the Smoluchowski equation. Two different processes are considered: ligand rebinding in MbCO and protein folding. For the rebinding dynamics of carbon monoxide (CO) to native myoglobin (Mb) from locations around the active site, the two-dimensional free energy surface (FES) is constructed using extensive molecular dynamics simulations. The surface describes the minima in the A state (bound MbCO), CO in the distal pocket and in the Xe4 pocket, and the transitions between these states and allows to study the diffusion of CO in detail. For the folding dynamics of protein G, a previously determined two-dimensional FES was available. To follow the diffusive dynamics on these rough free energy surfaces, the Smoluchowski equation is solved using the recently developed hierarchical discrete approximation method. From the relaxation of the initial nonequilibrium distribution, experimentally accessible quantities such as the rebinding time for CO or the folding time for protein G can be calculated. It is found that the free energy barrier for CO in the Xe4 pocket and in the distal pocket (B state) closer to the heme iron is approximately 6 kcal/mol which is considerably larger than the inner barrier which separates the bound state and the B state. For the folding of protein G, a barrier of approximately 10 kcal/mol between the unfolded and the folded state is consistent with folding times of the order of milliseconds.  相似文献   

6.
Interconversion dynamics of the ligand in the primary docking site of myoglobin (Mb) and hemoglobin (Hb) in trehalose and glycerol/D2O mixtures at 283 K was investigated by probing time-resolved vibrational spectra of CO photolyzed from these proteins. The interconversion dynamics in viscous media are similar to those in aqueous solution, indicating that it is minimally coupled to the solvent-coupled large-scale protein motion. Interconversion rates in the heme pocket of Hb in water solution are slower than those of Mb in trehalose glass, suggesting that the interconversion barrier in Hb is intrinsically higher than that in Mb and is not modified by the solvent viscosity.  相似文献   

7.
Nitric oxide binding and unbinding from myoglobin (Mb) is central to the function of the protein. By using reactive molecular dynamics (MD) simulations, the dynamics following NO dissociation were characterized in both time and space. Ligand rebinding can be described by two processes on the 10 ps and 100 ps timescale, which agrees with recent optical and X‐ray absorption experiments. Explicitly including the iron out‐of‐plane (Fe‐oop) coordinate is essential for a meaningful interpretation of the data. The proposed existence of an “Fe‐oop/NO‐bound” state is confirmed and assigned to NO at a distance of approximately 3 Å away from the iron atom. However, calculated XANES spectra suggest that it is diffcult to distinguish between NO close to the heme‐Fe and positions further away in the primary site. Another elusive state, with Fe?ON coordination, was not observed experimentally because it is masked by the energetically more favorable but dissociative 4A state in this region, which makes the Fe?ON local minimum unobservable in wild‐type Mb. However, suitable active‐site mutations may stabilize this state.  相似文献   

8.
Biphasic geminate rebinding of CO to myoglobin upon flash photolysis has been associated to ligand distribution in hydrophobic cavities, structurally detected by time-resolved crystallography, xenon occupancy, and molecular simulations. We show that the time course of CO rebinding to human hemoglobin also exhibits a biphasic geminate rebinding when the protein is entrapped in wet nanoporous silica gel. A simple branched kinetic scheme, involving the bound state A, the primary docking site C, and a secondary binding site B was used to calculate the microscopic rates and the time-dependent population of the intermediate species. The activation enthalpies of the associated transitions were determined in the absence and presence of 80% glycerol. Potential hydrophobic docking cavities within the alpha and beta chains of hemoglobin were identified by computational modeling using xenon as a probe. A hydrophobic pocket on the distal side of the heme, corresponding to Xe4 in Mb, and a nearby site that does not have a correspondence in Mb were detected. Neither potential xenon sites on the proximal side nor a migration channel from the distal to proximal site was located. The small enthalpic barriers between states B and C are in very good agreement with the location of the xenon sites on the distal side. Furthermore, the connection between the two xenon sites is relatively open, explaining why the decreased mobility of the protein with viscosity only slightly perturbs the energetics of ligand migration between the two sites.  相似文献   

9.
We use nuclear resonance vibrational spectroscopy (NRVS) to identify the Fe-NO stretching frequency in the NO adduct of myoglobin (MbNO) and in the related six-coordinate porphyrin Fe(TPP)(1-MeIm)(NO). Frequency shifts observed in MbNO Raman spectra upon isotopic substitution of Fe or the nitrosyl nitrogen confirm and extend the NRVS results. In contrast with previous assignments, the Fe-NO frequency of these six-coordinate complexes lies 70-100 cm-1 lower than in the analogous five-coordinate nitrosyl complexes, indicating a significant weakening of the Fe-NO bond in the presence of a trans imidazole ligand. This result supports proposed mechanisms for NO activation of heme proteins and underscores the value of NRVS as a direct probe of metal reactivity in complex biomolecules.  相似文献   

10.
The binding of NO to iron is involved in the biological function of many heme proteins. Contrary to ligands like CO and O(2), which only bind to ferrous (Fe(II)) iron, NO binds to both ferrous and ferric (Fe(III)) iron. In a particular protein, the natural oxidation state can therefore be expected to be tailored to the required function. Herein, we present an ab initio potential-energy surface for ferric iron interacting with NO. This potential-energy surface exhibits three minima corresponding to eta(1)-NO coordination (the global minimum), eta(1)-ON coordination and eta(2) coordination. This contrasts with the potential-energy surface for Fe(II)-NO, which exhibits only two minima (the eta(2) coordination mode for Fe(II) is a transition state, not a minimum). In addition, the binding energies of NO are substantially larger for Fe(III) than for Fe(II). We have performed molecular dynamics simulations for NO bound to ferric myoglobin (Mb(III)) and compare these with results obtained for Mb(II). Over the duration of our simulations (1.5 ns), all three binding modes are found to be stable at 200 K and transiently stable at 300 K, with eventual transformation to the eta(1)-NO global-minimum conformation. We discuss the implication of these results related to studies of rebinding processes in myoglobin.  相似文献   

11.
Cytochrome c (Cyt c) is a heme protein involved in electron transfer and also in apoptosis. Its heme iron is bisaxially ligated to histidine and methionine side chains and both ferric and ferrous redox states are physiologically relevant, as well as a ligand exchange between internal residue and external diatomic molecule. The photodissociation of internal axial ligand was observed for several ferrous heme proteins including Cyt c, but no time-resolved studies have been reported on ferric Cyt c. To investigate how the oxidation state of the heme influences the primary photoprocesses, we performed a comprehensive comparative study on horse heart Cyt c by subpicosecond time-resolved resonance Raman and femtosecond transient absorption spectroscopy. We found that in ferric Cyt c, in contrast to ferrous Cyt c, the photodissociation of an internal ligand does not take place, and relaxation dynamics is dominated by vibrational cooling in the ground electronic state of the heme. The intermolecular vibrational energy transfer was found to proceed in a single phase with a temperature decay of approximately 7 ps in both ferric and ferrous Cyt c. For ferrous Cyt c, the instantaneous photodissociation of the methionine side chain from the heme iron is the dominant event, and its rebinding proceeds in two phases, with time constants of approximately 5 and approximately 16 ps. A mechanism of this process is discussed, and the difference in photoinduced coordination behavior between ferric and ferrous Cyt c is explained by an involvement of the excited electronic state coupled with conformational relaxation of the heme.  相似文献   

12.
HNO can interact with numerous heme proteins, but atomic level structures are largely unknown. In this work, various structural models for the first stable HNO heme protein complex, MbHNO (Mb, myoglobin), were examined by quantum chemical calculations. This investigation led to the discovery of two novel structural models that can excellently reproduce numerous experimental spectroscopic properties. They are also the first atomic level structures that can account for the experimentally observed high stabilities. These two models involve two distal His conformations as reported previously for MbCNR and MbNO. However, a unique dual hydrogen bonding feature of the HNO binding was not reported before in heme protein complexes with other small molecules such as CO, NO, and O(2). These results shall facilitate investigations of HNO bindings in other heme proteins.  相似文献   

13.
时间分辨拉曼光谱研究一氧化氮与肌红蛋白的结合过程   总被引:1,自引:0,他引:1  
纳秒瞬态拉曼光谱技术是研究分子结构变化超快动态过程的重要实验手段之一.而肌红蛋白(Mb)与小分子配体的结合过程一直是人们研究的焦点.本文旨在利用纳秒瞬态拉曼光谱技术研究小分子配体NO与肌红蛋白结合的动力学过程.通过考察MbNO光解后产物脱氧肌红蛋白(DeoxyMb)与反应物MbNO的ν4特征振动峰的强度比值随激光激发功率的变化,阐述了利用纳秒瞬态拉曼光谱技术研究MbNO体系中NO与DeoxyMb结合过程的可行性.利用纳秒瞬态拉曼光谱技术,获得了与皮秒时间分辨拉曼和皮秒时间分辨吸收相一致的结合动力学实验结果.为研究其它复杂体系的超快结合动力学过程提供了一种新的思路.  相似文献   

14.
To address the role of the secondary hydroxyl group of heme a/o in heme-copper oxidases, we incorporated Fe(III)-2,4 (4,2) hydroxyethyl vinyl deuterioporphyrin IX, as a heme o mimic, into the engineered heme-copper center in myoglobin (sperm whale myoglobin L29H/F43H, called Cu(B)Mb). The only difference between the heme b of myoglobin and the heme o mimic is the substitution of one of the vinyl side chains of the former with a hydroxyethyl group of the latter. This substitution resulted in an approximately 4 nm blue shift in the Soret band and approximately 20 mV decrease in the heme reduction potential. In a control experiment, the heme b in Cu(B)Mb was also replaced with a mesoheme, which resulted in an approximately 13 nm blue shift and approximately 30 mV decrease in the heme reduction potential. Kinetic studies of the heme o mimic-substituted Cu(B)Mb showed significantly different reactivity toward copper-dependent oxygen reduction from that of the b-type Cu(B)Mb. In reaction with O2, Cu(B)Mb with a native heme b showed heme oxygenase activity by generating verdoheme in the presence of Cu(I). This heme degradation reaction was slowed by approximately 19-fold in the heme o mimic-substituted Cu(B)Mb (from 0.028 s(-1) to 0.0015 s(-1)), while the mesoheme-substituted Cu(B)Mb shared a similar heme degradation rate with that of Cu(B)Mb (0.023 s(-1)). No correlation was found between the heme reduction potential and its O2 reactivity. These results strongly suggest the critical role of the hydroxyl group of heme o in modulating heme-copper oxidase activity through participation in an extra hydrogen-bonding network.  相似文献   

15.
Du J  Perera R  Dawson JH 《Inorganic chemistry》2011,50(4):1242-1249
His93Gly sperm whale myoglobin (H93G Mb) has the proximal histidine ligand removed to create a cavity for exogenous ligand binding, providing a remarkably versatile template for the preparation of model heme complexes. The investigation of model heme adducts is an important way to probe the relationship between coordination structure and catalytic function in heme enzymes. In this study, we have successfully generated and spectroscopically characterized the H93G Mb cavity mutant ligated with less common alkylamine ligands (models for Lys or the amine group of N-terminal amino acids) in numerous heme iron states. All complexes have been characterized by electronic absorption and magnetic circular dichroism spectroscopy in comparison with data for parallel imidazole-ligated H93G heme iron moieties. This is the first systematic spectral study of models for alkylamine- or terminal amine-ligated heme centers in proteins. High-spin mono- and low-spin bis-amine-ligated ferrous and ferric H93G Mb adducts have been prepared together with mixed-ligand ferric heme complexes with alkylamine trans to nitrite or imidazole as heme coordination models for cytochrome c nitrite reductase or cytochrome f, respectively. Six-coordinate ferrous H93G Mb derivatives with CO, NO, and O(2) trans to the alkylamine have also been successfully formed, the latter for the first time. Finally, a novel high-valent ferryl species has been generated. The data in this study represent the first thorough investigation of the spectroscopic properties of alkylamine-ligated heme iron systems as models for naturally occurring heme proteins ligated by Lys or terminal amines.  相似文献   

16.
The rebinding of CO to myoglobin (Mb) from locations around the active site is studied using a combination of molecular dynamics and stochastic simulations for native and L29F mutant Mb. The interaction between the dissociated ligand and the protein environment is described by the recently developed fluctuating three-point charge model for the CO molecule. Umbrella sampling along trajectories, previously found to sample the binding site (B) and the Xe4 pocket, is used to construct free-energy profiles for the ligand escape. On the basis of the Smoluchowski equation, the relaxation of different initial population distributions is followed in space and time. For native Mb at room temperature, the calculated rebinding times are in good agreement with experimental values and give an inner barrier of 4.3 kcal/mol between the docking site B (Mb...CO) and the A state (bound MbCO), compared to an effective barrier, Heff, of 4.5 kcal/mol and barriers into the majority conformation A1 and the minority conformation A3 of 2.4 and 4.3 kcal/mol, respectively. In the case of the L29F mutant, the free-energy surface is flatter and the dynamics is much more rapid. As was found in experiment, escape to the Xe4 pocket is facile for L29F whereas, for native Mb, the barriers to this site are larger. At lower temperatures, the rebinding dynamics is delayed by orders of magnitude also due to increased barriers between the docking sites.  相似文献   

17.
Femtosecond coherence spectroscopy is used to probe the low-frequency (20-200 cm(-1)) vibrational modes of heme proteins in solution. Horseradish peroxidase (HRP), myoglobin (Mb), and Campylobacter jejuni globin (Cgb) are compared and significant differences in the coherence spectra are revealed. It is concluded that hydrogen bonding and ligand charge do not strongly affect the low-frequency coherence spectra and that protein-specific deformations of the heme group lower its symmetry and control the relative spectral intensities. Such deformations potentially provide a means for proteins to tune heme reaction coordinates, so that they can perform a broad array of specific functions. Native HRP displays complex spectral behavior above approximately 50 cm(-1) and very weak activity below approximately 50 cm(-1). Binding of the substrate analog, benzhydroxamic acid, leads to distinct changes in the coherence and Raman spectra of HRP that are consistent with the stabilization of a heme water ligand. The CN derivatives of the three proteins are studied to make comparisons under conditions of uniform heme coordination and spin-state. MbCN is dominated by a doming mode near 40 cm(-1), while HRPCN displays a strong oscillation at higher frequency (96 cm(-1)) that can be correlated with the saddling distortion observed in the X-ray structure. In contrast, CgbCN displays low-frequency coherence spectra that contain strong modes near 30 and 80 cm(-1), probably associated with a combination of heme doming and ruffling. HRPNO displays a strong doming mode near 40 cm(-1) that is activated by photolysis. The damping of the coherent motions is significantly reduced when the heme is shielded from solvent fluctuations by the protein material and reduced still further when T approximately < 50 K, as pure dephasing processes due to the protein-solvent phonon bath are frozen out.  相似文献   

18.
Nitrophorin 4 (NP4) is a heme protein that reversibly binds nitric oxide (NO), with release rates modulated by pH change. High-resolution structures of NP4 revealed that pH changes and NO binding induce a large conformational rearrangement in two loops that serve to protect the heme-bound NO molecule from solvent. We used extended (110 ns) molecular dynamics simulations of NP4 at pH 5 and pH 7, modeled by selective deprotonation of acidic groups. Conformational and dynamic changes were observed, consistent with those found in the crystal. Further, major solvent movement and NO escape were observed at pH 7, while the ligand remained in the heme binding pocket at pH 5. As a control, we also performed molecular dynamics (MD) simulations of sperm whale myoglobin, where NO migration into the interior cavities of the protein was observed, consistent with previous reports. We constructed a kinetic model of ligand escape to quantitatively relate the microscopic rate constants to the observed rates, and tested the predictions against the experimental data. The results suggest that release rates of diatomic molecules from heme proteins can be varied by several orders of magnitude through modest adjustments in geminate rebinding and gating behavior.  相似文献   

19.
New, reconstituted horse heart myoglobins possessing a hydrophobic domain at the terminal of the two heme propionate side chains were constructed. The O2 and CO bindings for the reconstituted deoxymyoglobins were examined in detail by laser flash photolysis and stopped-flow rapid mixing techniques. The artificially created domain worked as a barrier against exogenous ligand penetration into the heme pocket, whereas the bound O2 was stabilized in the reconstituted myoglobin as well as in the native one. In contrast, the CO dissociation rate for the reconstituted myoglobin increased by 20-fold compared to the native protein, suggesting that the incorporation of the hydrophobic domain onto the heme pocket perturbs the distal-site structure of the reconstituted myoglobin. As a result, the substantial ligand selectivity for the reconstituted myoglobin significantly increases in favor of O2 over CO with the M' value (= KCO/KO2) of 0.88, whereas, to the best of our knowledge, there is no myoglobin mutant in which the O2 affinity exceeds the CO one. The present work concludes that the O2 selectivity of myoglobin over CO is markedly improved by chemically modifying the heme propionates without any mutation of the amino acid residues in the distal site.  相似文献   

20.
N,N'-Bis(carboxymethyl)-N,N'-dinitroso-1,4-phenylenediamine (1) fragments to release 1 equiv of NO* and the denitrosated radical of 1 (2), when exposed to a approximately 10 ns, 308 nm laser pulse. Species 2 can fragment to give another equivalent of NO* and the doubly denitrosated quinoimine derivative of 1 (3), it can recombine with NO* to give 1 and ring-nitrosated isomers of 1, or in the presence of a reducing agent, 2 can be reduced (to species 4). Photogenerated NO* can be used to probe fast reactions of biochemical interest, making 1 a valuable research tool. This paper focuses on the chemistry of 2, whose reactivity must be well characterized if 1 is to be used to its full potential. [Ru(NH3)6]2+ (RuII) and [Fe(CN)6]4- (FeII) were both shown to reduce 2, with bimolecular rate constants in the diffusion limit. When solutions initially containing 70 microM of RuII, 20 microM myoglobin (Mb) and varying amounts of 1 were irradiated, the only Mb reaction product was nitrosomyoglobin (MbNO). In contrast, in solutions containing only Mb and 1, Mb is converted to both MbNO and oxidized myoglobin (metMb). When FeII was used in place of RuII, Mb was oxidized to metMb, but approximately 100x more slowly than in solutions containing only Mb and 1. This showed that 2 first oxidized FeII to [Fe(CN)6]3- (FeIII), which then oxidized Mb at the slower rate. The ratio metMb/MbNO obtained in the experiments with FeII was 0.6, whereas the ratio predicted from previously known chemistry of 2 was approximately 1 under the experimental conditions. The result is explained if, upon photolysis, 1 first forms a caged encounter complex [2, NO*], which fragments to give 3 and 2 equiv of NO*, without ever releasing free 2 into solution. This hypothesis was further strengthened by analyzing the amount of NO* generated by photolysis of 1 in the absence of added reductant. The original mechanism underestimates the NO* generated, a problem solved by invoking direct release of NO* and 3 from photolysis of 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号