首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
This paper presents a theoretical result on convergence of a primal affine-scaling method for convex quadratic programs. It is shown that, as long as the stepsize is less than a threshold value which depends on the input data only, Ye and Tse's interior ellipsoid algorithm for convex quadratic programming is globally convergent without nondegeneracy assumptions. In addition, its local convergence rate is at least linear and the dual iterates have an ergodically convergent property.Research supported in part by the NSF under grant DDM-8721709.  相似文献   

2.
Complementarity and nondegeneracy in semidefinite programming   总被引:4,自引:0,他引:4  
Primal and dual nondegeneracy conditions are defined for semidefinite programming. Given the existence of primal and dual solutions, it is shown that primal nondegeneracy implies a unique dual solution and that dual nondegeneracy implies a unique primal solution. The converses hold if strict complementarity is assumed. Primal and dual nondegeneracy assumptions do not imply strict complementarity, as they do in LP. The primal and dual nondegeneracy assumptions imply a range of possible ranks for primal and dual solutionsX andZ. This is in contrast with LP where nondegeneracy assumptions exactly determine the number of variables which are zero. It is shown that primal and dual nondegeneracy and strict complementarity all hold generically. Numerical experiments suggest probability distributions for the ranks ofX andZ which are consistent with the nondegeneracy conditions. Supported in part by the U.S. National Science Foundation grant CCR-9625955. Supported in part by U.S. National Science Foundation grant CCR-9501941 and the U.S. Office of Naval Research grant N00014-96-1-0704. Supported in part by U.S. National Science Foundation grant CCR-9401119.  相似文献   

3.
As in many primal—dual interior-point algorithms, a primal—dual infeasible-interior-point algorithm chooses a new point along the Newton direction towards a point on the central trajectory, but it does not confine the iterates within the feasible region. This paper proposes a step length rule with which the algorithm takes large distinct step lengths in the primal and dual spaces and enjoys the global convergence.Part of this research was done when M. Kojima and S. Mizuno visited at the IBM Almaden Research Center. Partial support from the Office of Naval Research under Contract N00014-91-C-0026 is acknowledged.Supported by Grant-in-Aids for Co-operative Research (03832017) of The Japan Ministry of Education, Science and Culture.Supported by Grant-in-Aids for Encouragement of Young Scientist (03740125) and Co-operative Research (03832017) of The Japan Ministry of Education, Science and Culture.  相似文献   

4.
Usual global convergence results for sequential quadratic programming (SQP) algorithms with linesearch rely on some a priori assumptions about the generated sequences, such as boundedness of the primal sequence and/or of the dual sequence and/or of the sequence of values of a penalty function used in the linesearch procedure. Different convergence statements use different combinations of assumptions, but they all assume boundedness of at least one of the sequences mentioned above. In the given context boundedness assumptions are particularly undesirable, because even for non-pathological and well-behaved problems the associated penalty functions (whose descent is used to produce primal iterates) may not be bounded below for any value of the penalty parameter. Consequently, boundedness assumptions on the iterates are not easily justifiable. By introducing a very simple and computationally cheap safeguard in the linesearch procedure, we prove boundedness of the primal sequence in the case when the feasible set is nonempty, convex, and bounded. If, in addition, the Slater condition holds, we obtain a complete global convergence result without any a priori assumptions on the iterative sequences. The safeguard consists of not accepting a further increase of constraints violation at iterates which are infeasible beyond a chosen threshold, which can always be ensured by the proposed modified SQP linesearch criterion. The author is supported in part by CNPq Grants 301508/2005-4, 490200/2005-2, 550317/2005-8, by PRONEX–Optimization, and by FAPERJ Grant E-26/151.942/2004.  相似文献   

5.
Quasi-Newton algorithms for unconstrained nonlinear minimization generate a sequence of matrices that can be considered as approximations of the objective function second derivatives. This paper gives conditions under which these approximations can be proved to converge globally to the true Hessian matrix, in the case where the Symmetric Rank One update formula is used. The rate of convergence is also examined and proven to be improving with the rate of convergence of the underlying iterates. The theory is confirmed by some numerical experiments that also show the convergence of the Hessian approximations to be substantially slower for other known quasi-Newton formulae.The work of this author was supported by the National Sciences and Engineering Research Council of Canada, and by the Information Technology Research Centre, which is funded by the Province of Ontario.  相似文献   

6.
We consider a primal optimization problem in a reflexive Banach space and a duality scheme via generalized augmented Lagrangians. For solving the dual problem (in a Hilbert space), we introduce and analyze a new parameterized Inexact Modified Subgradient (IMSg) algorithm. The IMSg generates a primal-dual sequence, and we focus on two simple new choices of the stepsize. We prove that every weak accumulation point of the primal sequence is a primal solution and the dual sequence converges weakly to a dual solution, as long as the dual optimal set is nonempty. Moreover, we establish primal convergence even when the dual optimal set is empty. Our second choice of the stepsize gives rise to a variant of IMSg which has finite termination.  相似文献   

7.
We study a trust region affine scaling algorithm for solving the linearly constrained convex or concave programming problem. Under primal nondegeneracy assumption, we prove that every accumulation point of the sequence generated by the algorithm satisfies the first order necessary condition for optimality of the problem. For a special class of convex or concave functions satisfying a certain invariance condition on their Hessians, it is shown that the sequences of iterates and objective function values generated by the algorithm convergeR-linearly andQ-linearly, respectively. Moreover, under primal nondegeneracy and for this class of objective functions, it is shown that the limit point of the sequence of iterates satisfies the first and second order necessary conditions for optimality of the problem. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.The work of these authors was based on research supported by the National Science Foundation under grant INT-9600343 and the Office of Naval Research under grants N00014-93-1-0234 and N00014-94-1-0340.  相似文献   

8.
This paper proposes two sets of rules, Rule G and Rule P, for controlling step lengths in a generic primal—dual interior point method for solving the linear programming problem in standard form and its dual. Theoretically, Rule G ensures the global convergence, while Rule P, which is a special case of Rule G, ensures the O(nL) iteration polynomial-time computational complexity. Both rules depend only on the lengths of the steps from the current iterates in the primal and dual spaces to the respective boundaries of the primal and dual feasible regions. They rely neither on neighborhoods of the central trajectory nor on potential function. These rules allow large steps without performing any line search. Rule G is especially flexible enough for implementation in practically efficient primal—dual interior point algorithms.Part of the research was done when M. Kojima and S. Mizuno visited at the IBM Almaden Research Center. Partial support from the Office of Naval Research under Contracts N00014-87-C-0820 and N00014-91-C-0026 is acknowledged.  相似文献   

9.
We develop a convergence theory for convex and linearly constrained trust region methods which only requires that the step between iterates produce a sufficient reduction in the trust region subproblem. Global convergence is established for general convex constraints while the local analysis is for linearly constrained problems. The main local result establishes that if the sequence converges to a nondegenerate stationary point then the active constraints at the solution are identified in a finite number of iterations. As a consequence of the identification properties, we develop rate of convergence results by assuming that the step is a truncated Newton method. Our development is mainly geometrical; this approach allows the development of a convergence theory without any linear independence assumptions.Work supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research of the U.S. Department of Energy under Contract W-31-109-Eng-38.Work supported in part by the National Science Foundation grant DMS-8803206 and by the Air Force Office of Scientific Research grant AFSOR-860080.  相似文献   

10.
The present paper first shows that, without any dependent structure assumptions for a sequence of random variables, the refined results of the complete convergence for the sequence is equivalent to the corresponding complete moment convergence of the sequence. Then this paper investigates the convergence rates and refined convergence rates (or complete moment convergence) for probabilities of moderate deviations of moving average processes. The results in this paper extend and generalize some well-known results.  相似文献   

11.
The affine-scaling algorithm, first proposed by Dikin, is presently enjoying great popularity as a potentially effective means of solving linear programs. An outstanding question about this algorithm concerns its convergence in the presence of degeneracy. In this paper, we give new convergence results for this algorithm that do not require any non-degeneracy assumption on the problem. In particular, we show that if the stepsize choice of either Dikin or Barnes or Vanderbei, et al. is used, then the algorithm generates iterates that converge at least linearly with a convergence ratio of , wheren is the number of variables and (0,1] is a certain stepsize ratio. For one particular stepsize choice which is an extension of that of Barnes, we show that the cost of the limit point is within O(/(1–)) of the optimal cost and, for sufficiently small (roughly, proportional to how close the cost of the nonoptimal vertices are to the optimal cost), is exactly optimal. We prove the latter result by using an unusual proof technique, that of analyzing the ergodic convergence of the corresponding dual vectors. For the special case of network flow problems with integer data, we show that it suffices to take = 1/(6mC), wherem is the number of constraints andC is the sum of the cost coefficients, to attain exact optimality.This research is partially supported by the U.S. Army Research Office, contract DAAL03-86-K-0171 (Center for Intelligent Control Systems), by the National Science Foundation, grant NSF-ECS-8519058, and by the Science and Engineering Research Board of McMaster University.  相似文献   

12.
Algorithms for convex programming, based on penalty methods, can be designed to have good primal convergence properties even without uniqueness of optimal solutions. Taking primal convergence for granted, in this paper we investigate the asymptotic behavior of an appropriate dual sequence obtained directly from primal iterates. First, under mild hypotheses, which include the standard Slater condition but neither strict complementarity nor second-order conditions, we show that this dual sequence is bounded and also, each cluster point belongs to the set of Karush–Kuhn–Tucker multipliers. Then we identify a general condition on the behavior of the generated primal objective values that ensures the full convergence of the dual sequence to a specific multiplier. This dual limit depends only on the particular penalty scheme used by the algorithm. Finally, we apply this approach to prove the first general dual convergence result of this kind for penalty-proximal algorithms in a nonlinear setting.  相似文献   

13.
We study the convergence properties of reduced Hessian successive quadratic programming for equality constrained optimization. The method uses a backtracking line search, and updates an approximation to the reduced Hessian of the Lagrangian by means of the BFGS formula. Two merit functions are considered for the line search: the 1 function and the Fletcher exact penalty function. We give conditions under which local and superlinear convergence is obtained, and also prove a global convergence result. The analysis allows the initial reduced Hessian approximation to be any positive definite matrix, and does not assume that the iterates converge, or that the matrices are bounded. The effects of a second order correction step, a watchdog procedure and of the choice of null space basis are considered. This work can be seen as an extension to reduced Hessian methods of the well known results of Powell (1976) for unconstrained optimization.This author was supported, in part, by National Science Foundation grant CCR-8702403, Air Force Office of Scientific Research grant AFOSR-85-0251, and Army Research Office contract DAAL03-88-K-0086.This author was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under contracts W-31-109-Eng-38 and DE FG02-87ER25047, and by National Science Foundation Grant No. DCR-86-02071.  相似文献   

14.
In this paper, under the existence of a certificate of nonnegativity of the objective function over the given constraint set, we present saddle-point global optimality conditions and a generalized Lagrangian duality theorem for (not necessarily convex) polynomial optimization problems, where the Lagrange multipliers are polynomials. We show that the nonnegativity certificate together with the archimedean condition guarantees that the values of the Lasserre hierarchy of semidefinite programming (SDP) relaxations of the primal polynomial problem converge asymptotically to the common primal–dual value. We then show that the known regularity conditions that guarantee finite convergence of the Lasserre hierarchy also ensure that the nonnegativity certificate holds and the values of the SDP relaxations converge finitely to the common primal–dual value. Finally, we provide classes of nonconvex polynomial optimization problems for which the Slater condition guarantees the required nonnegativity certificate and the common primal–dual value with constant multipliers and the dual problems can be reformulated as semidefinite programs. These classes include some separable polynomial programs and quadratic optimization problems with quadratic constraints that admit certain hidden convexity. We also give several numerical examples that illustrate our results.  相似文献   

15.
In this paper we give a new convergence analysis of a projective scaling algorithm. We consider a long-step affine scaling algorithm applied to a homogeneous linear programming problem obtained from the original linear programming problem. This algorithm takes a fixed fraction λ≤2/3 of the way towards the boundary of the nonnegative orthant at each iteration. The iteration sequence for the original problem is obtained by pulling back the homogeneous iterates onto the original feasible region with a conical projection, which generates the same search direction as the original projective scaling algorithm at each iterate. The recent convergence results for the long-step affine scaling algorithm by the authors are applied to this algorithm to obtain some convergence results on the projective scaling algorithm. Specifically, we will show (i) polynomiality of the algorithm with complexities of O(nL) and O(n 2 L) iterations for λ<2/3 and λ=2/3, respectively; (ii) global covnergence of the algorithm when the optimal face is unbounded; (iii) convergence of the primal iterates to a relative interior point of the optimal face; (iv) convergence of the dual estimates to the analytic center of the dual optimal face; and (v) convergence of the reduction rate of the objective function value to 1−λ.  相似文献   

16.
Consider the utilization of a Lagrangian dual method which is convergent for consistent convex optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? We answer this question in the affirmative for a convex program and an associated subgradient algorithm for its Lagrange dual. We show that the primal–dual pair of programs corresponding to an associated homogeneous dual function is in turn associated with a saddle-point problem, in which—in the inconsistent case—the primal part amounts to finding a solution in the primal space such that the Euclidean norm of the infeasibility in the relaxed constraints is minimized; the dual part amounts to identifying a feasible steepest ascent direction for the Lagrangian dual function. We present convergence results for a conditional \(\varepsilon \)-subgradient optimization algorithm applied to the Lagrangian dual problem, and the construction of an ergodic sequence of primal subproblem solutions; this composite algorithm yields convergence of the primal–dual sequence to the set of saddle-points of the associated homogeneous Lagrangian function; for linear programs, convergence to the subset in which the primal objective is at minimum is also achieved.  相似文献   

17.
A general class of variable stepsize continuous two-step Runge-Kutta methods is investigated. These methods depend on stage values at two consecutive steps. The general convergence and order criteria are derived and examples of methods of orderp and stage orderq=p orq=p–1 are given forp5. Numerical examples are presented which demonstrate that high order and high stage order are preserved on nonuniform meshes with large variations in ratios between consecutive stepsizes.The work of the first author was supported by the National Science Foundation under grant NSF DMS-9208048. The work of the second author was supported by the Italian Government.  相似文献   

18.
We give the lower bound on the number of sharp shadow-boundaries of convexd-polytopes (or unbounded convex polytopal sets) withn facets. The polytopes (sets) attaining these bounds are characterized. Additionally, our results will be transferred to the dual theory.The research work of the first author was (partially) supported by Hungarian National Foundation for Scientific Research, grant no. 1812.  相似文献   

19.
On the convergence of Newton iterations to non-stationary points   总被引:1,自引:0,他引:1  
We study conditions under which line search Newton methods for nonlinear systems of equations and optimization fail due to the presence of singular non-stationary points. These points are not solutions of the problem and are characterized by the fact that Jacobian or Hessian matrices are singular. It is shown that, for systems of nonlinear equations, the interaction between the Newton direction and the merit function can prevent the iterates from escaping such non-stationary points. The unconstrained minimization problem is also studied, and conditions under which false convergence cannot occur are presented. Several examples illustrating failure of Newton iterations for constrained optimization are also presented. The paper also shows that a class of line search feasible interior methods cannot exhibit convergence to non-stationary points. This author was supported by Air Force Office of Scientific Research grant F49620-00-1-0162, Army Research Office Grant DAAG55-98-1-0176, and National Science Foundation grant INT-9726199.This author was supported by Department of Energy grant DE-FG02-87ER25047-A004.This author was supported by National Science Foundation grant CCR-9987818 and Department of Energy grant DE-FG02-87ER25047-A004.  相似文献   

20.
Kojima, Megiddo, and Mizuno investigate an infeasible-interior-point algorithm for solving a primal—dual pair of linear programming problems and they demonstrate its global convergence. Their algorithm finds approximate optimal solutions of the pair if both problems have interior points, and they detect infeasibility when the sequence of iterates diverges. Zhang proves polynomial-time convergence of an infeasible-interior-point algorithm under the assumption that both primal and dual problems have feasible points. In this paper, we show that a modification of the Kojima—Megiddo—Mizuno algorithm solves the pair of problems in polynomial time without assuming the existence of the LP solution. Furthermore, we develop anO(nL)-iteration complexity result for a variant of the algorithm.The original title was Polynomiality of the Kojima—Megiddo—Mizuno infeasible-interior-point algorithm for linear programming.Research performed while visiting Cornell University (April 1992 – January 1993) as an Overseas Research Scholar of the Ministry of Science, Education and Culture of Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号