首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We obtain a class of primal affine scaling algorithms which generalize some known algorithms. This class, depending on a r-parameter, is constructed through a family of metrics generated by −r power, r ? 1, of the diagonal iterate vector matrix. We prove the so-called weak convergence of the primal class for nondegenerate linearly constrained convex programming. We observe the computational performance of the class of primal affine scaling algorithms, accomplishing tests with linear programs from the NETLIB library and with some quadratic programming problems described in the Maros and Mészáros repository.  相似文献   

2.
In this paper we introduce a primal-dual affine scaling method. The method uses a search-direction obtained by minimizing the duality gap over a linearly transformed conic section. This direction neither coincides with known primal-dual affine scaling directions (Jansen et al., 1993; Monteiro et al., 1990), nor does it fit in the generic primal-dual method (Kojima et al., 1989). The new method requires main iterations. It is shown that the iterates follow the primal-dual central path in a neighbourhood larger than the conventional neighbourhood. The proximity to the primal-dual central path is measured by trigonometric functions.  相似文献   

3.
In this paper we give a new convergence analysis of a projective scaling algorithm. We consider a long-step affine scaling algorithm applied to a homogeneous linear programming problem obtained from the original linear programming problem. This algorithm takes a fixed fraction λ≤2/3 of the way towards the boundary of the nonnegative orthant at each iteration. The iteration sequence for the original problem is obtained by pulling back the homogeneous iterates onto the original feasible region with a conical projection, which generates the same search direction as the original projective scaling algorithm at each iterate. The recent convergence results for the long-step affine scaling algorithm by the authors are applied to this algorithm to obtain some convergence results on the projective scaling algorithm. Specifically, we will show (i) polynomiality of the algorithm with complexities of O(nL) and O(n 2 L) iterations for λ<2/3 and λ=2/3, respectively; (ii) global covnergence of the algorithm when the optimal face is unbounded; (iii) convergence of the primal iterates to a relative interior point of the optimal face; (iv) convergence of the dual estimates to the analytic center of the dual optimal face; and (v) convergence of the reduction rate of the objective function value to 1−λ.  相似文献   

4.
In this paper, we introduce an affine scaling algorithm for semidefinite programming (SDP), and give an example of a semidefinite program such that the affine scaling algorithm converges to a non-optimal point. Both our program and its dual have interior feasible solutions and unique optimal solutions which satisfy strict complementarity, and they are non-degenerate everywhere.  相似文献   

5.
Zhang  Yin  Zhang  Detong 《Mathematical Programming》1994,66(1-3):361-377
At present the interior-point methods of choice are primal—dual infeasible-interior-point methods, where the iterates are kept positive, but allowed to be infeasible. In practice, these methods have demonstrated superior computational performance. From a theoretical point of view, however, they have not been as thoroughly studied as their counterparts — feasible-interior-point methods, where the iterates are required to be strictly feasible. Recently, Kojima et al., Zhang, Mizuno and Potra studied the global convergence of algorithms in the primal—dual infeasible-interior-point framework. In this paper, we continue to study this framework, and in particular we study the local convergence properties of algorithms in this framework. We construct parameter selections that lead toQ-superlinear convergence for a merit function andR-superlinear convergence for the iteration sequence, both at rate 1 + where can be arbitrarily close to one.Research supported in part by NSF DMS-9102761 and DOE DE-FG05-91ER25100.Corresponding author.  相似文献   

6.
We describe an interior-point algorithm for monotone linear complementarity problems in which primal-dual affine scaling is used to generate the search directions. The algorithm is shown to have global and superlinear convergence with Q-order up to (but not including) two. The technique is shown to be consistent with a potential-reduction algorithm, yielding the first potential-reduction algorithm that is both globally and superlinearly convergent.Corresponding author. The work of this author was based on research supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.The work of this author was based on research supported by the National Science Foundation under grant DDM-9109404 and the Office of Naval Research under grant N00014-93-1-0234. This work was done while the author was a faculty member of the Systems and Industrial Engineering Department at the University of Arizona.  相似文献   

7.
In this paper we show that the primal-dual Dikin affine scaling algorithm for linear programming of Jansen. Roos and Terlaky enhances an asymptotical $O(\sqrt n L)$ complexity by using corrector steps. We also show that the result remains valid when the method is applied to positive semi-definite linear complementarity problems.  相似文献   

8.
In this paper we extend and improve the classical affine scaling interior-point Newton method for solving nonlinear optimization subject to linear inequality constraints in the absence of the strict complementarity assumption. Introducing a computationally efficient technique and employing an identification function for the definition of the new affine scaling matrix, we propose and analyze a new affine scaling interior-point Newton method which improves the Coleman and Li affine sealing matrix in [2] for solving the linear inequlity constrained optimization. Local superlinear and quadratical convergence of the proposed algorithm is established under the strong second order sufficiency condition without assuming strict complementarity of the solution.  相似文献   

9.
We study a trust region affine scaling algorithm for solving the linearly constrained convex or concave programming problem. Under primal nondegeneracy assumption, we prove that every accumulation point of the sequence generated by the algorithm satisfies the first order necessary condition for optimality of the problem. For a special class of convex or concave functions satisfying a certain invariance condition on their Hessians, it is shown that the sequences of iterates and objective function values generated by the algorithm convergeR-linearly andQ-linearly, respectively. Moreover, under primal nondegeneracy and for this class of objective functions, it is shown that the limit point of the sequence of iterates satisfies the first and second order necessary conditions for optimality of the problem. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.The work of these authors was based on research supported by the National Science Foundation under grant INT-9600343 and the Office of Naval Research under grants N00014-93-1-0234 and N00014-94-1-0340.  相似文献   

10.
This paper provides an analysis of the polynomiality of primal-dual interior point algorithms for nonlinear complementarity problems using a wide neighborhood. A condition for the smoothness of the mapping is used, which is related to Zhu’s scaled Lipschitz condition, but is also applicable to mappings that are not monotone. We show that a family of primal-dual affine scaling algorithms generates an approximate solution (given a precision ε) of the nonlinear complementarity problem in a finite number of iterations whose order is a polynomial ofn, ln(1/ε) and a condition number. If the mapping is linear then the results in this paper coincide with the ones in Jansen et al., SIAM Journal on Optimization 7 (1997) 126–140. Research supported in part by Grant-in-Aids for Encouragement of Young Scientists (06750066) from the Ministry of Education, Science and Culture, Japan. Research supported by Dutch Organization for Scientific Research (NWO), grant 611-304-028  相似文献   

11.
In this paper we show the global convergence of the affine scaling methods without assuming any condition on degeneracy. The behavior of the method near degenerate faces is analyzed in detail on the basis of the equivalence between the affine scaling methods for homogeneous LP problems and Karmarkar's method. It is shown that the step-size 1/8, where the displacement vector is normalized with respect to the distance in the scaled space, is sufficient to guarantee the global convergence of the affine scaling methods.This paper was presented at the International Symposium Interior Point Methods for Linear Programming: Theory and Practice, held on January 18–19, 1990, at the Europa Hotel, Scheveningen, the Netherlands.  相似文献   

12.
This paper proves local convergence rates of primal-dual interior point methods for general nonlinearly constrained optimization problems. Conditions to be satisfied at a solution are those given by the usual Jacobian uniqueness conditions. Proofs about convergence rates are given for three kinds of step size rules. They are: (i) the step size rule adopted by Zhang et al. in their convergence analysis of a primal-dual interior point method for linear programs, in which they used single step size for primal and dual variables; (ii) the step size rule used in the software package OB1, which uses different step sizes for primal and dual variables; and (iii) the step size rule used by Yamashita for his globally convergent primal-dual interior point method for general constrained optimization problems, which also uses different step sizes for primal and dual variables. Conditions to the barrier parameter and parameters in step size rules are given for each case. For these step size rules, local and quadratic convergence of the Newton method and local and superlinear convergence of the quasi-Newton method are proved. A preliminary version of this paper was presented at the conference “Optimization-Models and Algorithms” held at the Institute of Statistical Mathematics, Tokyo, March 1993.  相似文献   

13.
Recently, Zhang, Tapia, and Dennis (Ref. 1) produced a superlinear and quadratic convergence theory for the duality gap sequence in primal-dual interior-point methods for linear programming. In this theory, a basic assumption for superlinear convergence is the convergence of the iteration sequence; and a basic assumption for quadratic convergence is nondegeneracy. Several recent research projects have either used or built on this theory under one or both of the above-mentioned assumptions. In this paper, we remove both assumptions from the Zhang-Tapia-Dennis theory.Dedicated to the Memory of Magnus R. Hestenes, 1906–1991This research was supported in part by NSF Cooperative Agreement CCR-88-09615 and was initiated while the first author was at Rice University as a Visiting Member of the Center for Research in Parallel Computation.The authors thank Yinyu Ye for constructive comments and discussions concerning this material.This author was supported in part by NSF Grant DMS-91-02761 and DOE Grant DE-FG05-91-ER25100.This author was supported in part by AFOSR Grant 89-0363, DOE Grant DE-FG05-86-ER25017, and ARO Grant 9DAAL03-90-G-0093.  相似文献   

14.
We consider an extension of the affine scaling algorithm for linear programming problems with free variables to problems having infinitely many constraints, and explore the relationship between this algorithm and the finite affine scaling method applied to a discretization of the problem.This material is based on research supported by Air Force Office of Scientific Research Grant AFOSR 89-0410.  相似文献   

15.
In this paper, we present a simpler proof of the result of Tsuchiya and Muramatsu on the convergence of the primal affine scaling method. We show that the primal sequence generated by the method converges to the interior of the optimum face and the dual sequence to the analytic center of the optimal dual face, when the step size implemented in the procedure is bounded by 2/3. We also prove the optimality of the limit of the primal sequence for a slightly larger step size of 2q/(3q–1), whereq is the number of zero variables in the limit. We show this by proving the dual feasibility of a cluster point of the dual sequence.Partially supported by the grant CCR-9321550 from NSF.  相似文献   

16.
In this paper, we present a variant of the primal affine scaling method, which we call the primal power affine scaling method. This method is defined by choosing a realr>0.5, and is similar to the power barrier variant of the primal-dual homotopy methods considered by den Hertog, Roos and Terlaky and Sheu and Fang. Here, we analyze the methods forr>1. The analysis for 0.50<r<1 is similar, and can be readily carried out with minor modifications. Under the non-degeneracy assumption, we show that the method converges for any choice of the step size . To analyze the convergence without the non-degeneracy assumption, we define a power center of a polytope. We use the connection of the computation of the power center by Newton's method and the steps of the method to generalize the 2/3rd result of Tsuchiya and Muramatsu. We show that with a constant step size such that /(1-)2r > 2/(2r-1) and with a variable asymptotic step size k uniformly bounded away from 2/(2r+1), the primal sequence converges to the relative interior of the optimal primal face, and the dual sequence converges to the power center of the optimal dual face. We also present an accelerated version of the method. We show that the two-step superlieear convergence rate of the method is 1+r/(r+1), while the three-step convergence rate is 1+ 3r/(r+2). Using the measure of Ostrowski, we note thet the three-step method forr=4 is more efficient than the two-step quadratically convergent method, which is the limit of the two-step method asr approaches infinity.Partially supported by the grant CCR-9321550 from NSF.  相似文献   

17.
We analyze several affine potential reduction algorithms for linear programming based on simplifying assumptions. We show that, under a strong probabilistic assumption regarding the distribution of the data in an iteration, the decrease in the primal potential function will be with high probability, compared to the guaranteed(1). ( 2n is a parameter in the potential function andn is the number of variables.) Under the same assumption, we further show that the objective reduction rate of Dikin's affine scaling algorithm is with high probability, compared to no guaranteed convergence rate.Research supported in part by NSF Grant DDM-8922636.  相似文献   

18.
In this paper, we propose an infeasible-interior-point algorithm for linear programning based on the affine scaling algorithm by Dikin. The search direction of the algorithm is composed of two directions, one for satisfying feasibility and the other for aiming at optimality. Both directions are affine scaling directions of certain linear programming problems. Global convergence of the algorithm is proved under a reasonable nondegeneracy assumption. A summary of analogous global convergence results without any nondegeneracy assumption obtained in [17] is also given.  相似文献   

19.
In this paper, a new nonmonotone MBFGS algorithm for unconstrained optimization will be proposed. Under some suitable assumptions, the global and superlinear convergence of the new nonmonotone MBFGS algorithm on convex objective functions will be established. Some numerical experiments show that this new nonmonotone MBFGS algorithm is competitive to the MBFGS algorithm and the nonmonotone BFGS algorithm.  相似文献   

20.
Development in interior point methods has suggested various solution trajectories, also called central paths, for linear programming. In this paper we define a new central path through a log-exponential perturbation to the complementarity equation in the Karush-Kuhn-Tucker system. The behavior of this central path is investigated and an algorithm is proposed. The algorithm can compute an -optimal solution at a superlinear rate of convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号