首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lee CM  Chuang YL  Chiang CY  Lee GH  Liaw WF 《Inorganic chemistry》2006,45(26):10895-10904
The stable mononuclear Ni(III)-thiolate complexes [NiIII(L)(P(C6H3-3-SiMe3-2-S)3)]- (L = SePh (2), Cl (3), SEt (4), 2-S-C4H3S (5), CH2CN (7)) were isolated and characterized by UV-vis, EPR, IR, SQUID, CV, 1H NMR, and single-crystal X-ray diffraction. The increased basicity (electronic density) of the nickel center of complexes [NiIII(L)(P(C6H3-3-SiMe3-2-S)3)]- modulated by the monodentate ligand L and the substituted groups of the phenylthiolate rings promotes the stability and reactivity. In contrast to the irreversible reduction at -1.17 V (vs Cp2Fe/Cp2Fe+) for complex 3, the cyclic voltammograms of complexes [NiIII(SePh)(P(o-C6H4S)3)]-, 2, 4, and 7 display reversible NiIII/II redox processes with E(1/2) = -1.20, -1.26, -1.32, and -1.34 V (vs Cp2Fe/Cp2Fe+), respectively. Compared to complex 2 containing a phenylselenolate-coordinated ligand, complex 4 with a stronger electron-donating ethylthiolate coordinated to the Ni(III) promotes dechlorination of CH2Cl2 to yield complex 3 (kobs = (6.01 +/- 0.03) x 10-4 s-1 for conversion of complex 4 into 3 vs kobs = (4.78 +/- 0.02) x 10-5 s-1 for conversion of complex 2 into 3). Interestingly, addition of CH3CN into complex 3 in the presence of sodium hydride yielded the stable Ni(III)-cyanomethanide complex 7 with a NiIII-CH2CN bond distance of 2.037(3) A. The NiIII-SEt bond length of 2.273(1) A in complex 4 is at the upper end of the 2.12-2.28 A range for the NiIII-S bond lengths of the oxidized-form [NiFe] hydrogenases. In contrast to the inertness of complexes 3 and 7 under CO atmosphere, carbon monoxide triggers the reductive elimination of the monodentate chalcogenolate ligand of complexes 2, 4, and 5 to produce the trigonal bipyramidal complex [NiII(CO)(P(C6H3-3-SiMe3-2-S)3]- (6).  相似文献   

2.
The dicyanodicarbonyliron(II) thiolate complexes trans,cis-[(CN)(2)(CO)(2)Fe(S,S-C-R)](-) (R = OEt (2), N(Et)(2) (3)) were prepared by the reaction of [Na][S-C(S)-R] and [Fe(CN)(2)(CO)(3)(Br)](-) (1). Complex 1 was obtained from oxidative addition of cyanogen bromide to [Fe(CN)(CO)(4)](-). In a similar fashion, reaction of complex 1 with [Na][S,O-C(5)H(4)N], and [Na][S,N-C(5)H(4)] produced the six-coordinate trans,cis-[(CN)(2)(CO)(2)Fe(S,O-C(5)H(4)N)](-) (6) and trans,cis-[(CN)(2)(CO)(2)Fe(S,N-C(5)H(4))](-) (7) individually. Photolysis of tetrahydrofuran (THF) solution of complexes 2, 3, and 7 under CO led to formation of the coordinatively unsaturated iron(II) dicyanocarbonyl thiolate compounds [(CN)(2)(CO)Fe(S,S-C-R)](-) (R = OEt (4), N(Et)(2) (5)) and [(CN)(2)(CO)Fe(S,N-C(5)H(4))](-) (8), respectively. The IR v(CN) stretching frequencies and patterns of complexes 4, 5, and 8 have unambiguously identified two CN(-) ligands occupying cis positions. In addition, density functional theory calculations suggest that the architecture of five-coordinate complexes 4, 5, and 8 with a vacant site trans to the CO ligand and two CN(-) ligands occupying cis positions serves as a conformational preference. Complexes 2, 3, and 7 were reobtained when the THF solution of complexes 4, 5, and 8 were exposed to CO atmosphere at 25 degrees C individually. Obviously, CO ligand can be reversibly bound to the Fe(II) site in these model compounds. Isotopic shift experiments demonstrated the lability of carbonyl ligands of complexes 2, 3, 4, 5, 7, and 8. Complexes [(CN)(2)(CO)Fe(S,S-C-R)](-) and NiA/NiC states [NiFe] hydrogenases from D. gigas exhibit a similar one-band pattern in the v(CO) region and two-band pattern in the v(CN) region individually, but in different positions, which may be accounted for by the distinct electronic effects between [S,S-C-R](-) and cysteine ligands. Also, the facile formations of five-coordinate complexes 4, 5, and 8 imply that the strong sigma-donor, weak pi-acceptor CN(-) ligands play a key role in creating/stabilizing five-coordinate iron(II) [(CN)(2)(CO)Fe(S,S-C-R)](-) complexes with a vacant coordination site trans to the CO ligand.  相似文献   

3.
In the search for complexes modeling the [Fe(CN)(2)(CO)(cysteinate)(2)] cores of the active centers of [NiFe] hydrogenases, the complex (NEt(4))(2)[Fe(CN)(2)(CO)('S(3)')] (4) was found ('S(3)'(2-)=bis(2-mercaptophenyl)sulfide(2-)). Starting complex for the synthesis of 4 was [Fe(CO)(2)('S(3)')](2) (1). Complex 1 formed from [Fe(CO)(3)(PhCH=CHCOMe)] and neutral 'S(3)'-H(2). Reactions of 1 with PCy(3) or DPPE (1,2-bis(diphenylphosphino)ethane) yielded diastereoselectively [Fe(CO)(2)(PCy(3))('S(3)')] (2) and [Fe(CO)(dppe)('S(3)')] (3). The diastereoselective formation of 2 and 3 is rationalized by the trans influence of the 'S(3)'(2-) thiolate and thioether S atoms which act as pi donors and pi acceptors, respectively. The trans influence of the 'S(3)'(2-) sulfur donors also rationalizes the diastereoselective formation of the C(1) symmetrical anion of 4, when 1 is treated with four equivalents of NEt(4)CN. The molecular structures of 1, 3 x 0.5 C(7)H(8), and (AsPh(4))(2)[Fe(CN)(2)(CO)('S(3)')] x acetone (4 a x C(3)H(6)O) were determined by X-ray structure analyses. Complex 4 is the first complex that models the unusual 2:1 cyano/carbonyl and dithiolate coordination of the [NiFe] hydrogenase iron site. Complex 4 can be reversibly oxidized electrochemically; chemical oxidation of 4 by [Fe(Cp)(2)PF(6)], however, led to loss of the CO ligand and yielded only products, which could not be characterized. When dissolved in solvents of increasing proton activity (from CH(3)CN to buffered H(2)O), complex 4 exhibits drastic nu(CO) blue shifts of up to 44 cm(-1), and relatively small nu(CN) red shifts of approximately 10 cm(-1). The nu(CO) frequency of 4 in H(2)O (1973 cm(-1)) is higher than that of any hydrogenase state (1952 cm(-1)). In addition, the nu(CO) frequency shift of 4 in various solvents is larger than that of [NiFe] hydrogenase in its most reduced or oxidized state. These results demonstrate that complexes modeling properly the nu(CO) frequencies of [NiFe] hydrogenase probably need a [Ni(thiolate)(2)] unit. The results also demonstrate that the nu(CO) frequency of [Fe(CN)(2)(CO)(thiolate)(2)] complexes is more significantly shifted by changing the solvent than the nu(CO) frequency of [NiFe] hydrogenases by coupled-proton and electron-transfer reactions. The "iron-wheel" complex [Fe(6)[Fe('S(3)')(2)](6)] (6) resulting as a minor by-product from the recrystallization of 2 in boiling toluene could be characterized by X-ray structure analysis.  相似文献   

4.
Song LC  Li YL  Li L  Gu ZC  Hu QM 《Inorganic chemistry》2010,49(21):10174-10182
Three series of new Ni/Fe/S cluster complexes have been prepared and structurally characterized. One series of such complexes includes the linear type of (diphosphine)Ni-bridged double-butterfly Fe/S complexes [(μ-RS)(μ-S═CS)Fe(2)(CO)(6)](2)[Ni(diphosphine)] (1-6; R = Et, t-Bu, n-Bu, Ph; diphosphine = dppv, dppe, dppb), which were prepared by reactions of monoanions [(μ-RS)(μ-CO)Fe(2)(CO)(6)](-) (generated in situ from Fe(3)(CO)(12), Et(3)N, and RSH) with excess CS(2), followed by treatment of the resulting monoanions [(μ-RS)(μ-S═CS)Fe(2)(CO)(6)](-)with (diphosphine)NiCl(2). The second series consists of the macrocyclic type of (diphosphine)Ni-bridged double-butterfly Fe/S complexes [μ-S(CH(2))(4)S-μ][(μ-S═CS)Fe(2)(CO)(6)](2)[Ni(diphosphine)] (7-9; diphosphine = dppv, dppe, dppb), which were produced by the reaction of dianion [{μ-S(CH(2))(4)S-μ}{(μ-CO)Fe(2)(CO)(6)}(2)](2-) (formed in situ from Fe(3)(CO)(12), Et(3)N, and dithiol HS(CH(2))(4)SH with excess CS(2), followed by treatment of the resulting dianion [{μ-S(CH(2))(4)S-μ}{(μ-S═CS)Fe(2)(CO)(6)}(2)](2-) with (diphosphine)NiCl(2). However, more interestingly, when dithiol HS(CH(2))(4)SH (used for the production of 7-9) was replaced by HS(CH(2))(3)SH (a dithiol with a shorter carbon chain), the sequential reactions afforded another type of macrocyclic Ni/Fe/S complex, namely, the (diphosphine)Ni-bridged quadruple-butterfly Fe/S complexes [{μ-S(CH(2))(3)S-μ}{(μ-S═CS)Fe(2)(CO)(6)}(2)](2)[Ni(diphosphine)](2) (10-12; diphosphine = dppv, dppe, dppb). While a possible pathway for the production of the two types of novel metallomacrocycles 7-12 is suggested, all of the new complexes 1-12 were characterized by elemental analysis and spectroscopy and some of them by X-ray crystallography.  相似文献   

5.
Ruthenium complexes bearing ethylbis(2-pyridylethyl)amine (ebpea), which has flexible -C(2)H(4)- arms between the amine and the pyridyl groups and coordinates to a metal center in facial and meridional modes, have been synthesized and characterized. Three trichloro complexes, fac-[Ru(III)Cl(3)(ebpea)] (fac-[1]), mer-[Ru(III)Cl(3)(ebpea)] (mer-[1]), and mer-[Ru(II)Cl(3){η(2)-N(C(2)H(5))(C(2)H(4)py)═CH-CH(2)py}] (mer-[2]), were synthesized using the Ru blue solution. Formation of mer-[2] proceeded via a C-H activation of the CH(2) group next to the amine nitrogen atom of the ethylene arm. Reduction reactions of fac- and mer-[1] afforded a triacetonitrile complex mer-[Ru(II)(CH(3)CN)(3)(ebpea)](PF(6))(2) (mer-[3](PF(6))(2)). Five nitrosyl complexes fac-[RuX(2)(NO)(ebpea)]PF(6) (X = Cl for fac-[4]PF(6); X = ONO(2) for fac-[5]PF(6)) and mer-[RuXY(NO)(ebpea)]PF(6) (X = Cl, Y = Cl for mer-[4]PF(6); X = Cl, Y = CH(3)O for mer-[6]PF(6); X = Cl, Y = OH for mer-[7]PF(6)) were synthesized and characterized by X-ray crystallography. A reaction of mer-[2] in H(2)O-C(2)H(5)OH at room temperature afforded mer-[1]. Oxidation of C(2)H(5)OH in H(2)O-C(2)H(5)OH and i-C(3)H(7)OH in H(2)O-i-C(3)H(7)OH to acetaldehyde and acetone by mer-[2] under stirring at room temperature occurred with formation of mer-[1]. Alternative C-H activation of the CH(2) group occurred next to the pyridyl group, and formation of a C-N bond between the CH moiety and the nitrosyl ligand afforded a nitroso complex [Ru(II)(N(3))(2){N(O)CH(py)CH(2)N(C(2)H(5))C(2)H(4)py}] ([8]) in reactions of nitrosyl complexes with sodium azide in methanol, and reaction of [8] with hydrochloric acid afforded a corresponding chloronitroso complex [Ru(II)Cl(2){N(O)CH(py)CH(2)N(C(2)H(5))C(2)H(4)py}] ([9]).  相似文献   

6.
The known Os(IV)-cyanoimido complexes, mer-Et4N[OsIV(bpy)(Cl)3(NalphaCNbeta)] (mer-[OsIV=N-CN]-) (bpy = 2,2'-bipyridine) and trans-[OsIV(tpy)(Cl)2(NalphaCNbeta)] (trans-[OsIV=N-CN]) (2,2':6',2' '-terpyridine), have formal electronic relationships with high oxidation state Ru and Os-oxo and -dioxo complexes. These include multiple bonding to the metal, the ability to undergo multiple electron transfer, and the availability of nonbonding electron pairs for donation. Thermodynamic, oxo-like behavior is observed for mer-[OsIV=N-CN]- in the pH-dependence of its Os(VI/V) to Os(III/II) redox couples in 1:1 (v/v) CH3CN:H2O. Oxo-like behavior is also observed in the reaction between mer-[OsVI(bpy)(Cl)3(NalphaCNbeta)]PF6 and benzyl alcohol to give mer-[OsIV(bpy)(Cl)3(NalphaCNbetaH2)]PF6 and benzaldehyde. The reaction is first order in each reactant with kbenzyl(CH3CN, 25.0 +/- 0.1 degrees C) = (8.6 +/- 0.2) x 102 M-1 s-1. Formal NCN degrees transfer, analogous to O-atom transfer, occurs in reactions with tertiary phosphine and hexenes. In CH3CN under N2, a rapid reaction occurs between trans-[OsIV=N-CN] and PPh3 (kPPh3(DMF, 25.0 +/- 0.1 degrees C) = 4.06 +/- 0.02 M-1 s-1) to form the nitrilic N-bound Os(II)-(N-cyano)iminophosphorano product, trans-[OsII(tpy)(Cl)2(NalphaCNbetaPPh3)] (trans-[OsII-NalphaC-Nbeta=PPh3]). It undergoes solvolysis at 45 degrees C after 24 h to give trans-[OsII(tpy)(Cl)2(NCCH3)] and (N-cyano)iminophosphorane (NalphaC-Nbeta=PPh3). The analogue to epoxidation, N-cyanoaziridination of cyclohexene and 1-hexene by mer-[OsIV=N-CN]- and trans-[OsIV=N-CN], occurs at Nbeta to give the Os(IV)-N-cyanoaziridino complexes, mer-Et4N[OsII(bpy)(Cl)3(NalphaCNbetaC6H10)] and trans-[OsII(tpy)(Cl)2(NalphaCNbetaC6H11)], respectively. Oxidation to mer-[OsV(bpy)(Cl)3(NalphaCNbeta)]- greatly accelerates N-cyanoaziridination of cyclohexene, which is followed by slow solvolysis to give mer-[OsIII(bpy)(Cl)3(NCCH3)] and N-cyanoaziridine (NC-NC6H10). The Os-(N-cyano)aziridino complexes are the first well-characterized examples of coordinated cyanoaziridines.  相似文献   

7.
The non-heme iron enzyme cysteine dioxygenase (CDO) catalyzes the S-oxygenation of cysteine by O(2) to give cysteine sulfinic acid. The synthesis of a new structural and functional model of the cysteine-bound CDO active site, [Fe(II)(N3PyS)(CH(3)CN)]BF(4) (1) is reported. This complex was prepared with a new facially chelating 4N/1S(thiolate) pentadentate ligand. The reaction of 1 with O(2) resulted in oxygenation of the thiolate donor to afford the doubly oxygenated sulfinate product [Fe(II)(N3PySO(2))(NCS)] (2), which was crystallographically characterized. The thiolate donor provided by the new N3PyS ligand has a dramatic influence on the redox potential and O(2) reactivity of this Fe(II) model complex.  相似文献   

8.
The oxidation of L-cysteine by the outer-sphere oxidants [Fe(bpy)2(CN)2]+ and [Fe(bpy)(CN)4]- in anaerobic aqueous solution is highly susceptible to catalysis by trace amounts of copper ions. This copper catalysis is effectively inhibited with the addition of 1.0 mM dipicolinic acid for the reduction of [Fe(bpy)2(CN)2]+ and is completely suppressed with the addition of 5.0 mM EDTA (pH<9.00), 10.0 mM EDTA (9.010.0) for the reduction of [Fe(bpy)(CN)4]-. 1H NMR and UV-vis spectra show that the products of the direct (uncatalyzed) reactions are the corresponding Fe(II) complexes and, when no radical scavengers are present, L-cystine, both being formed quantitatively. The two reactions display mild kinetic inhibition by Fe(II), and the inhibition can be suppressed by the free radical scavenger PBN (N-tert-butyl-alpha-phenylnitrone). At 25 degrees C and micro=0.1 M and under conditions where inhibition by Fe(II) is insignificant, the general rate law is -d[Fe(III)]/dt=k[cysteine]tot[Fe(III)], with k={k2Ka1[H+]2+k3Ka1Ka2[H+]+k4Ka1Ka2Ka3{/}[H+]3+Ka1[H+]2+Ka1Ka2[H+]+Ka1Ka2Ka3}, where Ka1, Ka2, and Ka3 are the successive acid dissociation constants of HSCH2CH(NH3+)CO2H. For [Fe(bpy)2(CN)2]+, the kinetics over the pH range of 3-7.9 yields k2=3.4+/-0.6 M(-1) s(-1) and k3=(1.18+/-0.02)x10(6) M(-1) s(-1) (k4 is insignificant in the fitting). For [Fe(bpy)(CN)4]- over the pH range of 6.1-11.9, the rate constants are k3=(2.13+/-0.08)x10(3) M(-1) s(-1) and k4=(1.01+/-0.06)x10(4) M(-1) s(-1) (k2 is insignificant in the fitting). All three terms in the rate law are assigned to rate-limiting electron-transfer reactions in which various thiolate forms of cysteine are reactive. Applying Marcus theory, the self-exchange rate constant of the *SCH2CH(NH2)CO2-/-SCH2CH(NH2)CO2- redox couple was obtained from the oxidation of L-cysteine by [Fe(bpy)(CN)4]-, with k11=4x10(5) M(-1) s(-1). The self-exchange rate constant of the *SCH2CH(NH3+)CO2-/-SCH2CH(NH3+)CO2- redox couple was similarly obtained from the rates with both Fe(III) oxidants, a value of 6x10(6) M(-1) s(-1) for k11 being derived. Both self-exchange rate constants are quite large as is to be expected from the minimal rearrangement that follows conversion of a thiolate to a thiyl radical, and the somewhat lower self-exchange rate constant for the dianionic form of cysteine is ascribed to electrostatic repulsion.  相似文献   

9.
Iron-sulfur clusters containing a singly or doubly NH.S hydrogen-bonded arenethiolate ligand, [Fe(4)S(4)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), [Fe(4)S(4){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), [Fe(2)S(2)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), and [Fe(2)S(2){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), were synthesized as models of bacterial [4Fe-4S] and plant-type [2Fe-2S] ferredoxins. The X-ray structures and IR spectra of (PPh(4))(2)[Fe(4)S(4){S-2,6-(CH(3)CONH)(2)C(6)H(3)}(4)].2CH(3)CN and (NEt(4))(2)[Fe(2)S(2){S-2,6-(t-BuCONH)(2)C(6)H(3)}(4)] indicate that the two amide NH groups at the o,o'-positions are directed to the thiolate sulfur atom and form double NH.S hydrogen bonds. The NH.S hydrogen bond contributes to the positive shift of the redox potential of not only (Fe(4)S(4))(+)/(Fe(4)S(4))(2+) but also (Fe(4)S(4))(2+)/(Fe(4)S(4))(3+) in the [4Fe-4S] clusters as well as (Fe(2)S(2))(2+)/(Fe(2)S(2))(3+) in the [2Fe-2S] clusters. The doubly NH.S hydrogen-bonded thiolate ligand effectively prevents the ligand exchange reaction by benzenethiol because the two amide NH groups stabilize the thiolate by protection from dissociation.  相似文献   

10.
Hexacyanoferrate(III) reacts with [FeII(meso)(CH3CN)2](ClO4)2.2CH3CN (meso=5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) in acetonitrile/water mixture producing the title complex, where three [Fe(meso)]2+ units are connected by two [Fe(CN)6](3-) anions. Molecular modeling (MM+) shows a fairly linear molecule and M?ssbauer data are consistent with two terminal pentacoordinated low spin iron(II)-meso units linked to one hexacoordinated low spin iron(II)-meso through two hexacoordinated low spin iron(III) units. Spectroscopic characterization showed a typical mixed-valence charge transfer band and the degree of electron coupling was calculated to be H(AB)=678 cm(-1). Magnetic properties exhibited an antiferromagnetic exchange interaction between the iron(III) ions with a coupling constant J= -44 cm(-1).  相似文献   

11.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

12.
First-principles density functional theory calculations of synthetic models of [FeFe]-hydrogenase are used to show that the theoretical methods reproduce observed structures and infrared spectra to high accuracy. The accuracy is demonstrated for synthetic Fe(I)Fe(I) models ([(mu-PDT)Fe2(CO)6] and [(CN)(CO)2(mu-PDT)Fe2(CO)2(CN)]2-), for which we show that their infrared spectra are sensitive to the geometric arrangement of their CO/CN ligands and can be used in conjunction with quantum-mechanical total energies to predict the correct ligand geometry. We then analyze and predict the structure of mixed-valence Fe(II)Fe(I) models ([(mu-MeSCH2C(Me)(CH2S)2)Fe2(CO)4(CN)2]x-). These capabilities promise to distinguish among the various structural isomers of the enzyme's active site which are consistent with the limited accuracy of the X-ray observations.  相似文献   

13.
Kim JI  Yoo HS  Koh EK  Hong CS 《Inorganic chemistry》2007,46(25):10461-10463
The use of a new precursor, mer-[Fe(mpzcq)(CN)3]- (1), produced a dimeric molecule, [Fe(mpzcq)(CN)3][Mn(salen)(H2O)] x H2O (2), and a one-dimensional zigzag chain, [Fe(mpzcq)(CN)3][Mn(salcy)] x MeOH x MeCN (3). Antiferromagnetic couplings are operating between magnetic centers through CN ligands, and a field-induced metamagnetic transition is observed in 3.  相似文献   

14.
Dinuclear iron(II)-cyanocarbonyl complex [PPN](2)[Fe(CN)(2)(CO)(2)(mu-SEt)](2) (1) was prepared by the reaction of [PPN][FeBr(CN)(2)(CO)(3)] and [Na][SEt] in THF at ambient temperature. Reaction of complex 1 with [PPN][SEt] produced the triply thiolate-bridged dinuclear Fe(II) complex [PPN][(CN)(CO)(2)Fe(mu-SEt)(3)Fe(CO)(2)(CN)] (2) with the torsion angle of two CN(-) groups (C(5)N(2) and C(3)N(1)) being 126.9 degrees. The extrusion of two sigma-donor CN(-) ligands from Fe(II)Fe(II) centers of complex 1 as a result of the reaction of complex 1 and [PPN][SEt] reflects the electron-rich character of the dinuclear iron(II) when ligated by the third bridging ethylthiolate. The Fe-S distances (2.338(2) and 2.320(3) A for complexes 1 and 2, respectively) do not change significantly, but the Fe(II)-Fe(II) distance contracts from 3.505 A in complex 1 to 3.073 A in complex 2. The considerably longer Fe(II)-Fe(II) distance of 3.073 A in complex 2, compared to the reported Fe-Fe distances of 2.6/2.62 A in DdHase and CpHase, was attributed to the presence of the third bridging ethylthiolate, instead of pi-accepting CO-bridged ligand as observed in [Fe] hydrogenases. Additionally, in a compound of unusual composition ([Na.(5)/(2)H(2)O][(CN)(CO)(2)Fe(mu-SEt)(3)Fe(CO)(2)(CN)])(n)((1)/(2)O(Et)(2))(n) (3), the Na(+) cations and H(2)O molecules combining with dinuclear [(CN)(CO)(2)Fe(mu-SEt)(3)Fe(CO)(2)(CN)](-) anions create a polymeric framework wherein two CN(-) ligands are coordinated via CN(-)-Na(+)/CN(-)-(Na(+))(2) linkages, respectively.  相似文献   

15.
Huang JS  Yu GA  Xie J  Wong KM  Zhu N  Che CM 《Inorganic chemistry》2008,47(20):9166-9181
Reduction of [Fe(III)(Por)Cl] (Por = porphyrinato dianion) with Na2S2O4 followed by reaction with excess PH2Ph, PH2Ad, or PHPh2 afforded [Fe(II)(F20-TPP)(PH2Ph)2] (1a), [Fe(II)(F20-TPP)(PH2Ad)2] (1b), [Fe(II)(F20-TPP)(PHPh2)2] (2a), and [Fe(II)(2,6-Cl2TPP)(PHPh2)2] (2b). Reaction of [Ru(II)(Pc)(DMSO)2] (Pc = phthalocyaninato dianion) with PH2Ph or PHPh2 gave [Ru(II)(Pc)(PH2Ph)2] (3a) and [Ru(II)(Pc)(PHPh2)2] (4). [Ru(II)(Pc)(PH2Ad)2] (3b) and [Ru(II)(Pc)(PH2Bu(t))2] (3c) were isolated by treating a mixture of [Ru(II)(Pc)(DMSO)2] and O=PCl2Ad or PCl2Bu(t) with LiAlH4. Hydrophosphination of CH2=CHR (R = CO2Et, CN) with [Ru(II)(F20-TPP)(PH2Ph)2] or [Ru(II)(F20-TPP)(PHPh2)2] in the presence of (t)BuOK led to the isolation of [Ru(II)(F20-TPP)(P(CH2CH2R)2Ph)2] (R = CO2Et, 5a; CN, 5b) and [Ru(II)(F20-TPP)(P(CH2CH2R)Ph2)2] (R = CO2Et, 6a; CN, 6b). Similar reaction of 3a with CH2=CHCN or MeI gave [Ru(II)(Pc)(P(CH2CH2CN)2Ph)2] (7) or [Ru(II)(Pc)(PMe2Ph)2] (8). The reactions of 4 with CH2=CHR (R = CO2Et, CN, C(O)Me, P(O)(OEt)2, S(O)2Ph), CH2=C(Me)CO2Me, CH(CO2Me)=CHCO2Me, MeI, BnCl, and RBr (R = (n)Bu, CH2=CHCH2, MeC[triple bond]CCH2, HC[triple bond]CCH2) in the presence of (t)BuOK afforded [Ru(II)(Pc)(P(CH2CH2R)Ph2)2] (R = CO2Et, 9a; CN, 9b; C(O)Me, 9c; P(O)(OEt)2, 9d; S(O)2Ph, 9e), [Ru(II)(Pc)(P(CH2CH(Me)CO2Me)Ph2)2] (9f), [Ru(II)(Pc)(P(CH(CO2Me)CH2CO2Me)Ph2)2] (9g), and [Ru(II)(Pc)(PRPh2)2] (R = Me, 10a; Bu(n), 10b; Bn, 10c; CH2CH=CH2, 10d; CH2C[triple bond]CMe, 10e; CH=C=CH2, 10f). X-ray crystal structure determinations revealed Fe-P distances of 2.2597(9) (1a) and 2.309(2) A (2bx 2 CH2Cl2) and Ru-P distances of 2.3707(13) (3b), 2.373(2) (3c), 2.3478(11) (4), and 2.3754(10) A (5b x 2 CH2Cl2). Both the crystal structures of 3b and 4 feature intermolecular C-H...pi interactions, which link the molecules into 3D and 2D networks, respectively.  相似文献   

16.
Halfen JA  Moore HL  Fox DC 《Inorganic chemistry》2002,41(15):3935-3943
We report the synthesis, structural and spectroscopic characterization, and magnetic and electrochemical studies of a series of iron(II) complexes of the pyridyl-appended diazacyclooctane ligand L(8)py(2), including several that model the square-pyramidal [Fe(II)(N(his))(4)(S(cys))] structure of the reduced active site of the non-heme iron enzyme superoxide reductase. Combination of L(8)py(2) with FeCl(2) provides [L(8)py(2)FeCl(2)] (1), which contains a trigonal-prismatic hexacoordinate iron(II) center, whereas a parallel reaction using [Fe(H(2)O)(6)](BF(4))(2) provides [L(8)py(2)Fe(FBF(3))]BF(4) (2), a novel BF(4)(-)-ligated square-pyramidal iron(II) complex. Substitution of the BF(4)(-) ligand in 2 with formate or acetate ions affords distorted pentacoordinate [L(8)py(2)Fe(O(2)CH)]BF(4) (3) and [L(8)py(2)Fe(O(2)CCH(3))]BF(4) (4), respectively. Models of the superoxide reductase active site are prepared upon reaction of 2 with sodium salts of aromatic and aliphatic thiolates. These model complexes include [L(8)py(2)Fe(SC(6)H(4)-p-CH(3))]BF(4) (5), [L(8)py(2)Fe(SC(6)H(4)-m-CH(3))]BF(4) (6), and [L(8)py(2)Fe(SC(6)H(11))]BF(4) (7). X-ray crystallographic studies confirm that the iron(II)-thiolate complexes model the square-pyramidal geometry and N(4)S donor set of the reduced active site of superoxide reductase. The iron(II)-thiolate complexes are high spin (S = 2), and their solutions are yellow in color because of multiple charge-transfer transitions that occur between 300 and 425 nm. The ambient temperature cyclic voltammograms of the iron(II)-thiolate complexes contain irreversible oxidation waves with anodic peak potentials that correlate with the relative electron donating abilities of the thiolate ligands. This electrochemical irreversibility is attributed to the bimolecular generation of disulfides from the electrochemically generated iron(III)-thiolate species.  相似文献   

17.
Reaction of [PPN][Fe(NO)2(SePh)2] (1) with dimeric [Ni(mu-SCH2CH2SCH2CH2S)]2 in the presence of additional NO2- produced the neutral heterobimetallic [(ON)Ni[(mu-SCH2CH2)2S]Fe(NO)2] complex (2). The X-ray crystal structures of 1 and 2 show distorted tetrahedral iron dinitrosyl groups, assigned according to the Feltham-Enemark notation as [Fe(NO)2]9 The Fe-NO bonds are off linearity by an average of approximately equals 10 degrees for compounds 1 and 2, while a more linear Ni-NO coordination with a Ni-NO distance of 1.644(2) A was found in 2. The v(NO) value of complex 2 is consistent with an assignment for [Ni(NO)]9 of Ni0(NO)+ as is known for analogous phosphine derivatives, P3Ni0(NO)+. EPR signals of g values = 2.02-2.03 confirmed the existence of the odd electron in the chalcogenated [Fe(NO)2]9 compounds. Two [Fe(NO)2]10 complexes coordinated by the nickel(II) dithiolate, (bismercaptoethanediazacyclooctane)nickel(II), (Ni-1), (Ni-1)Fe(CO)(NO)2 and (Ni-1)Fe(NO)2, were prepared for comparison to the Ni0(NO)+ derivative and other monomeric and homodimetallic derivatives of the Fe(NO)2 fragment. While the oxidation level of Fe(NO)2 is the primary determinant of v(NO) values, they are also highly sensitive to ancillary ligands and, thereby, the distal metal influence through the bridging thiolate donor.  相似文献   

18.
The established ability of the Fe(II) bridging hydride species (micro-H)(micro-pdt)[Fe(CO)2(PMe3)]2+, 1-H+, to take-up and heterolytically activate dihydrogen, resulting in H/D scrambling of H2/D2 and H2/D2O mixtures (Zhao et al. Inorg. Chem. 2002, 41, 3917) has prompted a study of simultaneous alkene/H2 activation by such [Fe]H2ase model complexes. That the required photolysis produced an open site was substantiated by substitution of CO in 1-H+ by CH3CN with formation of structurally characterized [(micro-H)(micro-pdt)[Fe(CO)2(PMe3)][Fe(CO)(CH3CN)(PMe3)]]+[PF6]-. Under similar photolytic conditions, H/D exchange reactions between D2 and terminal alkenes (ethylene, propene and 1-butene), but not bulkier alkenes such as 2-butene or cyclohexene, were catalyzed by 1-H+ and the edt (SCH2CH2S) analogue, 2-H+. Substantial regioselectivity for H/D exchange at the internal vinylic hydrogen was observed. The extent to which the olefins were deuterium enriched vs deuterated was catalyst dependent. The stabilizing effect of the binuclear chelating ligands, SCH2CH2CH2S, pdt, and SCH2CH2S, edt, is required for the activity of binuclear catalysts, as the mono-dentate micro-SEt analogue decomposed to inactive products under the photolytic conditions of the catalysis. Reactions of 1 and 2 with EtOSO2CF3 yielded the S-alkylated products, [(micro-SCH2CH2CH2SEt)[Fe(CO)2(PMe3)]2]+[SO3CF3]- (1-Et+), and 2-Et+, rather than micro-C2H5 analogues to the micro-H of 1-H+. The stability and lack of reactivity toward H2 of 1-Et+ and 2-Et+, indicates they are not on the reaction path of the olefin/D2 H/D exchange process. A mechanism with olefin binding to an open site created by CO loss and formation of an Fe-(CH2CHDR) intermediate is indicated. A likely role of a binuclear chelate effect is implicated for the unique S-XXX-S cofactor in the active site of [Fe]H2ase.  相似文献   

19.
The reaction of Fe2+ with CN-, which was first performed in 1704, has been used to synthesize a new series of basic [FeII,III(CN)4L2]n- complexes, where L is a monodentate ligand. trans-Na2[FeII(CN)4(DMSO)2] and cis-[NEt4]2[FeII(CN)4(pyridine)2] are synthesized by the direct reaction of FeCl2 with 4 equiv of CN- in DMSO or pyridine. Air oxidation of the latter compound gives cis-[NEt4][FeIII(CN)4(pyridine)2]. The non-cyanide ligands in these complexes undergo facile ligand exchange reactions with solvent. Reaction of cis-[NEt4]2[FeII(CN)4(pyridine)2] with CO at room temperature gives trans-[NEt4]2[FeII(CN)4(pyridine)(CO)].  相似文献   

20.
Hydrogenases catalyze the reversible oxidation of dihydrogen to protons and electrons. The structures of two Fe-only hydrogenases have been recently reported [Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853-1858. Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, E. C.; Fontecilla-Camps, J. C. Structure 1999, 7, 13-23], showing that the likely site of dihydrogen activation is the so-called [2Fe](H) cluster, where each Fe ion is coordinated by CO and CN(-) ligands and the two metals are bridged by a chelating S-X(3)-S ligand. Moreover, the presence of a water molecule coordinated to the distal Fe2 center suggested that the Fe2 atom could be a suitable site for binding and activation of H(2). In this contribution, we report a density functional theory investigation of the structural and electronic properties of complexes derived from the [(CO)(CH(3)S)(CN)Fe(II)(mu-PDT)Fe(II)(CO)(2)(CN)](-1) species, which is related to the [2Fe](H) cluster observed in Fe-only hydrogenases. Our results show that the structure of the [2Fe](H) cluster observed in the enzyme does not correspond to a stable form of the isolated cluster, in the absence of the protein. As a consequence, the reactivity of [(CO)(CH(3)S)(CN)Fe(II)(mu-PDT)Fe(II)(CO)(2)(CN)](-1) derivatives in solution may be expected to be quite different from that of the active site of Fe-only hydrogenases. In fact, the most favorable path for H(2) activation involves the two metal atoms and one of the bridging S atoms and is associated with a very low activation energy (5.3 kcal mol(-1)). The relevance of these observations for the catalytic properties of Fe-only hydrogenases is discussed in light of available experimental and theoretical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号