首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Iodocyclopropanes of trans configuration are produced stereoselectively from terminal alkenes by treatment with a reagent derived from iodoform, chromium(II) chloride, and TEEDA (N,N,N′,N′-tetraethylethylenediamine) in THF. Similarly, cyclopropylsilanes and cyclopropylboronic esters are obtained by using R3SiCHI2, and a combination of Cl2CHB(OR)2 and LiI instead of iodoform, respectively. The heterocyclopropanation occurs selectively at terminal double bonds, and di- and trisubstituted double bonds in the same molecules remain unchanged. Such functional groups as alcohol, ether, silyl ether, ester, tertiary amine, and amide groups are compatible with the reaction conditions.  相似文献   

2.
Transparent films were prepared by cross‐linking polyunsaturated poly(ether carbonate)s obtained by the multicomponent polymerization of CO2, propylene oxide, maleic anhydride, and allyl glycidyl ether. Poly(ether carbonate)s with ABXBA multiblock structures were obtained by sequential addition of mixtures of propylene oxide/maleic anhydride and propylene oxide/allyl glycidyl ether during the polymerization. The simultaneous addition of both monomer mixtures provided poly(ether carbonate)s with AXA triblock structures. Both types of polyunsaturated poly(ether carbonate)s are characterized by diverse functional groups, that is, terminal hydroxy groups, maleate moieties along the polymer backbone, and pendant allyl groups that allow for versatile polymer chemistry. The combination of double bonds substituted with electron‐acceptor and electron‐donor groups enables particularly facile UV‐ or redox‐initiated free‐radical curing. The resulting materials are transparent and highly interesting for coating applications.  相似文献   

3.
Formation of N−N bonds may offer an original approach to various nitrogen-containing heterocycles with numerous applications. For this purpose, we found that readily available heteroaromatic amines are appropriate substrates for providing an efficient and innovative approach for the formation of N−N bonds in the presence of iodine (III) reagent in very mild conditions. This method makes it possible to synthesize nitrogen rich triazapentalene derivatives exhibiting fluorescent properties, inaccessible with existing approaches.  相似文献   

4.
详细地综述了有关C=N双键立体选择性烯丙基化反应的研究进展. 重点讲述了使用手性辅助基团、手性试剂以及不对称催化剂进行C=N双键不对称烯丙基化的方法.  相似文献   

5.
The use of vinyl methyl ether as a chemical ionization reagent gas for the location of olefinic bonds is limited by reactions of various ion with vinyl methyl ether molecules. A 75: 20: 5 mixture of nitrogen/carbon disulphide/vinyl methyl ether suggested by Harrison and Chai gives much cleaner spectra and has been used to study octenes and octadienes. Evidence is presented to indicate the formation of two reaction complexes with octenes and four reaction complexes with unconjugated octadienes. Elimination of olefins from these complexes allows one to infer the positions of the carbon-carbon double bonds in each type of molecule.  相似文献   

6.
The radical copolymerization of N,N-diallyl-N,N-dimethylammonium chloride (AMAC) (M1) with ethylene glycol vinyl ether (M2) in an aqueous medium proceeds at a high rate to afford random copolymers. The reactivity ratios equal to r 1 = 2.18 and r 2 = 0.01 indicate that AMAC is a more active comonomer. The overall reaction order in comonomers is 2.4, and the effective activation energy is 97.4 ± 2 kJ/mol. The monomer M1 enters into copolymerization by both of the double bonds with the formation of pyrrolidinium structures in the chain through the cyclization stage.  相似文献   

7.
A novel series of sulfonated block copolymers were successfully synthesized by the condensation of modified poly(ether ether ketone) (PEEK) and polybutadiene (PB), followed by the selective post-sulfonation of PB blocks using acetyl sulfate as the sulfonating reagent. The sulfonic acid groups were only attached onto PB segments due to the high reactivity of double bonds to sulfonating reagent. The degree of sulfonation was controlled by changing the feed ratio of sulfonating reagent to block copolymer. PEEK-b-sPB could be easily cast into flexible and transparent membranes. The obtained membranes exhibited good thermal stability and satisfied mechanical properties. Tensile test showed the incorporation of sulfonate groups into PB blocks resulted in an increase in tensile strength and a decrease in elongation at break. TEM images revealed the existence of ionic spherical domains with the average sizes of 50-100 nm. Some of these small domains further aggregated to form large hydrophilic regions. The proton conductivity values were measured in the range of 10−2 S/cm in water and increased with increasing IEC and temperature.  相似文献   

8.
Ab initio SCF calculations were performed to study the conjugation of C, N, Si, and P double bonds with BH2 (π-acceptor) and NH2 (π-donor). The variations of the energy, geometry, and electronic distribution on rotation ZH2 groups connected to the double bonds depend greatly on the polarities and polarizabilities of the molecules under study. The repulsive (attractive) interactions of the lone pairs lying in the plane of the double bond with donor (acceptor) orbital can modify strongly the relative stabilities of the conformations and the parameters of the molecule and electronic structures.  相似文献   

9.
We report quantum mechanics calculations (B3LYP flavor of density functional theory) to determine the chemical reaction mechanism underlying the hypergolic reaction of pure HNO(3) with N,N,N',N'-tetramethylethylenediamine (TMEDA) and N,N,N',N'-tetramethylmethylenediamine (TMMDA). TMEDA and TMMDA are dimethyl amines linked by two CH(2) groups or one CH(2) group, respectively, but ignite very differently with HNO(3). We explain this dramatic difference in terms of the role that N lone-pair electrons play in activating adjacent chemical bonds. We identify two key atomistic level factors that affect the ignition delay: (1) The exothermicity for formation of the dinitrate salt from TMEDA or TMMDA. With only a single CH(2) group between basic amines, the diprotonation of TMMDA results in much stronger electrostatic repulsion, reducing the heat of dinitrate salt formation by 6.3 kcal/mol. (2) The reaction of NO(2) with TMEDA or TMMDA, which is the step that releases the heat and reactive species required to propagate the reaction. Two factors of TMEDA promote the kinetics by providing routes with low barriers to oxidize the C: (a) formation of a stable intermediate with a C-C double bond and (b) the lower bond energy for breaking the C-C single bond (by 18 kcal/mol comparing to alkane) between two amines. Both factors would decrease the ignition delay for TMEDA versus TMMDA. The same factors also explain the shorter ignition delay of 1,4-dimethylpiperazine (DMPipZ) versus 1,3,5-trimethylhexahydro-1,3,5-triazine (TMTZ). These results indicate that TMEDA and DMPipZ are excellent green replacements for hydrazines as the fuel in bipropellants.  相似文献   

10.
Siwei Liu  Feng Zhang  Yi Zhang  Jiarui Xu 《中国化学》2013,31(10):1315-1320
A series of linear poly glycidol copolymers, tethering with both alkene and hydroxyl groups, were prepared by a combination of anionic ring-opening polymerization (ROP) using specific reactions of ethoxy ethyl glycidyl ether (EEGE) and allyl glycidyl ether (AGE) firstly, and subsequently removal of the protection group of glycidol in EEGE to achieve the linear copolymer pendant with both hydroxyl groups and double bonds. The EEGE/AGE monomer reactivity ratio is measured to be 3.30/1.13. The chemical compositions of the as-synthesized polymers were characterized by tH NMR and GPC, and the glass transition temperatures (Tg) of as-synthesized polymers were determined by DSC. The final copolymers have abundant double bonds and hydroxyl as side groups. Furthermore, the ratio of the double bonds to hydroxyl groups can be controlled by the ratio of the starting materials in a wide range.  相似文献   

11.
A method for the location of the positions of carbon-carbon double bonds using high pressure mass spectrometry is proposed. A known olefinic molecular ion reacts with a second, unknown olefin to form a four-centre complex, which fragments with retention of the structural identity of methylene and substituted methylene groups to eliminate a new olefin molecule and to form an unsaturated ion from which the position of the double bond in the unknown olefin can be inferred. Vinyl methyl ether proved to be a convenient reagent gas and its molecular ion undergoes the required reaction with several classes of olefinic compound. Conjugated dienes and unsaturated compounds containing electronegative groups do not undergo this reaction.  相似文献   

12.
The reaction mechanism of the N–N bond cleavage in Ta(IV) hydrazido and hydrazidium complexes is studied using density functional theory. The N–N bond cleavage in Ta(IV) hydrazidium generates formal Ta(IV) nitridyl. The N–N bond cleavage in Ta(V) hydrazido gives terminal Ta(V) nitrido species. In the tetrahydrofuran solvent, terminal Ta(V) nitrido dimerizes through a one-step direct pathway leading to the [Ta(V),Ta(V)] bis(μ-nitrido) product. Two Ta–N bonds form simultaneously between the Ta center of one molecule and the terminal N atom of another. In the toluene solvent, there are two pathways of H atom abstraction and protonation producing mononuclear Ta(V) parent imide. The former consists of three steps originated from formal Ta(IV) nitridyl. The latter is unfavorable with terminal Ta(V) nitrido as the precursor.  相似文献   

13.
Treatment of 1,1,4,4-tetramethyl-2,3-diazabutadiene with the alane adduct [AlH3(NMe2Et)] yielded the hydrazine derivative (AlH2)2-(AlH)2(N2iPr2)3 (1) by the hydroalumination of both C N double bonds. Compound 1 has a complicated cage structure formed by three hydrazido groups and four aluminium atoms. As a particularly interesting structural motif it contains a N-N group side-on-coordinated to one aluminium atom through its lone pairs of electrons. Sublimation of 1 gave a heterocubane-type compound (HAlNiPr)4 (2) by the complete cleavage of all N-N bonds, one face of which is bridged by weakly coordinated diisopropyldiazene with a N-N double bond. Repeated sublimation gave the pure, unsupported heterocubane molecule 3. Heating of the rough product of the reaction of alane and diazabutadiene to 90 degrees C in a closed vessel yielded another product Al(AlH2)3(N2iPr2)3 (4), which contains a cyclic chelating ligand formed by three hydrazido groups and three aluminium atoms. This heterocycle coordinates a fourth aluminum atom in the molecular center by close contacts to all six nitrogen atoms. A strongly flattened, distorted octahedral coordination sphere results for the inner metal atom.  相似文献   

14.
p‐t‐Octylphenol formaldehyde resole resins have two linkage types of methylene‐ and dimethylene ether‐linkages and have three terminal types of hydrogen, methylol, and o‐methylene quinone. Variation of structural characteristics of the resins due to different types of linkages and terminals were studied using molecular dynamics and molecular mechanics. The structural characteristics of the methylene‐bridged resins were intramolecular hydrogen bonds between hydroxyl groups of the adjacent p‐t‐octylphenols. In the dimethylene ether‐bridged resin, the intramolecular hydrogen bonds between oxygen atoms of the dimethylene ether‐linkages and hydroxyl groups of the neighboring phenolic units were found. For the resins with both methylol terminals, one of both terminals of the resins was hidden at the center of the molecule when the resin size is large. The number of hydrogen bonds in the resins with the methylol terminal was larger than for the resins with the o‐methylene quinone terminal. Variation of the structural characteristics of the resins by dehydration of the terminal methylol was discussed. Using the calculated results, dissociation of the dimethylene ether linkage and crosslinking reaction of rubber chains by the resin were explained. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Self-assembled monolayers (SAMs) of 10-undecene-1-thiol on Au were functionalized with nitrogen-containing groups using an approach in which multilayer ammonia (NH(3)) films were deposited at low temperature onto the SAMs and subsequently exposed to 15 eV electrons. The result of this process was investigated after removal of the remaining NH(3) by annealing to room temperature using high-resolution electron energy loss spectroscopy (HREELS) and X-ray photoelectron spectroscopy (XPS). HREELS shows that the CC double bonds disappear during electron exposure, while XPS gives evidence that about 25% of the terminal double bonds of the SAM were functionalized. Also, XPS shows that a sufficiently thick NH(3) layer protects the underlying SAM from electron-induced damage. The process suggested here thus represents a particularly gentle approach to the functionalization of ultrathin molecular layers. Thermal desorption spectrometry (TDS) and electron-stimulated desorption (ESD) experiments on condensed layers of NH(3) reveal production of N(2) but show that significant amounts of the initial NH(3) as well as N(2) produced during electron exposure desorb. Hydrogen released upon formation of N(2) is held responsible for the reduction of double bonds and protection of the SAMs from damage.  相似文献   

16.
Reduction at ambient temperature of each of the lithium benzamidinates [Li(L(1))(tmeda)] or [{Li(L(2))(OEt(2))(2)}(2)] with four equivalents of lithium metal in diethyl ether or thf furnished the brown crystalline [Li(3)(L(1))(tmeda)] (1) or [Li(thf)(4)][Li(5)(L(2))(2)(OEt(2))(2)] (2), respectively. Their structures show that in each the [N(R(1))C(R(3))NR(2)](3-) moiety has the three negative charges largely localised on each of N, N' and R = Aryl); a consequence is that the "aromatic" 2,3- and 5,6-CC bonds of R(3) approximate to being double bonds. Multinuclear NMR spectra in C(6)D(6) and C(7)D(8) show that 1 and 2 exhibit dynamic behaviour. [The following abbreviations are used: L(1) = N(SiMe(3))C(Ph)N(SiMe(3)); L(2) = N(SiMe(3))C(C(6)H(4)Me-4)N(Ph); tmeda = (Me(2)NCH(2)-)(2); thf = tetrahydrofuran.] This reduction is further supported by a DFT analysis.  相似文献   

17.
The double “pancake” bonding in the dimers of the six‐membered heterocycles 1,3‐dithia‐2,4,6‐triazine ( 4 ) and 1,3‐dithia‐2,4‐diazine ( 16 ) were investigated by means of high‐level quantum chemical calculations (B3LYP and CCSD(T)). It was found that the S–S dimers, 20 a and 27 , are not the most stable isomers, but the dimers showing short S?N ( 21 a ) and S?C ( 25 , 28 ) bonds. An investigation of the 5‐phenyl‐1,3‐dithia‐2,4,6‐triazine ( 4 b ) yields that the syn dimer with two S?S bonds (2.57 Å) is the most stable one. In this dimer, the phenyl groups are placed on top of each other. The additional dispersion energy of the phenyl rings causes a stabilization of the syn‐S–S (C2v‐like) isomer. As a result, two weak albeit relevant single S?S bonds (2.57 Å) are predicted. These findings contradict the recently published concept of double “pancake” bonding in the dimer 4 b 2.  相似文献   

18.
Poly(10-undecene-1-ol)s as precursors for potential polar macromonomers were synthesized by metallocene-catalyzed polymerization. For the use as macromonomers, polymerizable terminal double bonds are an important requirement and thus, the investigation of the end groups in the polymers was the main focus of this study. The influence of the catalyst and polymerization conditions on the chain length of the polymer backbone, the monomer conversion as well as the end group characteristics were analyzed. It was possible to find conditions for preparing poly(10-undecene-1-ol)s with terminal double bonds using the catalyst system Cp2ZrCl2/MAO. Two other chosen catalysts produced mainly internal double bonds. The poly(10-undecene-1-ol)s could be prepared as atactic or isotactic-rich materials depending on the catalyst used.  相似文献   

19.
Employing TMSOTf as an easily available reagent, we have developed a mild and efficient method for the deprotection of both terminal and internal N,0-acetonide functionalities. Various regularly used protecting groups and common organic functional moieties were found to be unaffected by the described reaction conditions. In a few representative examples, the present method was also extended to deprotect acetonides obtained from 1,2-, and 1,3-terminal diols. The acetonide deprotection protocol described herein is expected to be a useful addition to the presently available methods for performing the above transformation.  相似文献   

20.
New model compounds for poly[N,N′-bis(phenoxyphenyl)pyromellitimide] have been synthesized in order to investigate the formation of imine bonds which are proposed to form during the curing process and lead to crosslinking in the bulk polymer. Raman studies show that terminal amines can react with imide carbonyls during curing to form C?N bonds. The Raman band due to C?N appears at 1656 cm?1 and the band due to C?O closest to the imine bond is observed at 1742 cm?1. These results are in agreement with previously published results on vapor deposited polyimide films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号