首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Schiff base (L) is prepared by condensation of cuminaldehyde and L-histidine, and characterized by elemental analysis, IR, UV-Vis, 1H-NMR, 13C-NMR, and mass spectra. Co(II), Ni(II), Cu(II), and Zn(II) complexes of this Schiff-base ligand are synthesized and characterized by elemental analysis, molar conductance, mass, IR, electronic spectra, magnetic moment, electron spin resonance (ESR), CV, TG/DTA, powder XRD, and SEM. The conductance data indicate that all the complexes are 1 : 1 electrolytes. IR data reveal that the Schiff base is a tridentate monobasic donor, coordinating through azomethine nitrogen, imidazole nitrogen, and carboxylato oxygen. The electronic spectral data and magnetic measurements suggest that Co(II) and Ni(II) complexes are tetrahedral, while Cu(II) complex has distorted square planar geometry. XRD and SEM show that Co(II), Cu(II), and Zn(II) complexes have crystalline nature, while the Ni(II) complex is amorphous and the particles are in nanocrystalline phase. The in vitro biological activities of the synthesized compounds were tested against the bacterial species, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Staphylococcus aureus; and fungal species, Aspergillus niger, Aspergillus flavus, and Candida albicans by the disc diffusion method. The biological study indicates that complexes exhibit more activity than the ligand. The nuclease activity of the ligand and its complexes are assayed on CT DNA using gel electrophoresis in the presence and the absence of H2O2. The Cu(II) complex shows increased nuclease activity in the presence of an oxidant when compared to the ligand, Co(II) and Ni(II) complexes.  相似文献   

2.
The semicarbazone (L1) has been prepared by reaction of semicarbazide and glutaraldehyde (2 : 1) in distilled water and methanol (1 : 1). The reaction of semicarbazide, glutaraldehyde and diethyl oxalate in distilled water and methanol gave Schiff-base L2, 1,2,4,7,9,10-hexaazacyclo-pentadeca-10,15-dien-3,5,6,8-tetraone. Complexes of first row transition metal ions Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) have also been synthesized. The ligand and its complexes were characterized by elemental analysis, molar conductance, magnetic moment measurements, IR, 1H NMR, UV–Visible spectra and thermogravimetric analysis (TGA). Molar conductance values show that the complexes of Ni(II), Cu(II), Zn(II), Mn(II) and Co(II) are 1 : 2 electrolytes. On the basis of electronic spectral studies and molar conductance measurements an octahedral structure has been proposed for Mn(II) and Co(II) complexes, tetrahedral for Zn(II) complex and square planar for Ni(II) and Cu(II). The thermal behavior of the compounds, studied by TGA in a nitrogen atmosphere up to 800°C, reveal that the complexes have higher thermal stability than the macrocycle. All the synthesized compounds and standard drugs kanamycin (antibacterial) and miconazole (antifungal) have been screened against bacterial strains Staphylococcus areus, Escherichia coli and fungal strains Candida albicans, Aspergillus niger. The metal complexes inhibit growth of bacteria to a greater extent than the ligand.  相似文献   

3.
Synthesis, characterization and biological studies of some thiodiamine metal complexes are described. Cobalt(II) and copper(II) complexes of type [Cu(L)2Cl2] and [Co(L)2SO4], where L = (cyclohexyl-N-thio)-1,2-ethylenediamine (L1) and (cyclohexyl-N-thio)-1,3-propanediamine (L2), were synthesized. The synthesized copper and cobalt thiodiamine complexes were characterized by elemental analysis, IR, mass, UV-VIS and 1H NMR spectroscopic studies. Thiodiamines coordinate as a bidentate N-S ligand. The binding sites are azomethine nitrogen and thioamide sulfur. Molar conductance values in dimethylsulfoxide indicate non-electrolyte nature of the complexes. In vitro-antimicrobial screening shows promising results against both bacterial and fungal strains.  相似文献   

4.
The Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II) and Cd (II) complexes were prepared by reaction of its metal chlorides with new azo-dye ligand (H2L). The ligand derived from 4,4′-oxydianiline and 2-amino-4-chlorophenol was synthesized in a 1:2 molar ratio. The structure of the ligand and its metal complexes was investigated using different tools such as elemental analysis (C, H, N and M), molar conductivity, IR, UV–vis, 1H-NMR, mass spectrometry and thermogravimetric and differential thermogravimetric studies. The data showed that the ligand acted as a N,N,O,O-binegative tetradentate ligand. All metal complexes had a octahedral structure as depicted by spectral and elemental analyses. The conductivity data showed the electrolytic nature of the Cr (III) and Fe (III) complexes while the other complexes were nonelectrolytes. Thermal analysis studies showed the decomposition of the complexes in four to five steps with the weight loss of hydrated water in the first decomposition step followed by the coordinated water and ligand molecules. Biological activity was tested for the prepared compounds against four bacterial species (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa) and against two fungal species (Aspergillus fumigatus and Candida albicans). Also, all complexes were screened for anticancer activities against a breast cancer (MCF-7) cell line. The [Co(L)(H2O)2] complex showed the lowest IC50 value. Molecular docking is a key tool in computer drug design. Therefore, investigation of protein receptors and ligand interaction plays a vital role in the design of structurally based drugs. As a result, docking studies were investigated for H2L ligand, [Mn(L)(H2O)2] and [Ni(L)(H2O)2] complexes with 5KBC, 3V7B and 4G9M receptors.  相似文献   

5.
Neutral complexes of Co(II), Ni(II), Cu(II), and Zn(II) have been synthesized from the Schiff bases derived from 3-nitrobenzylidene-4-aminoantipyrine and aniline (L1)/p-nitro aniline (L2)/p-methoxy aniline (L3) in the molar ratio 1 : 1. The structural features have been determined from microanalytical, IR, UV-Vis, 1H-NMR, mass, and ESR spectral data. The Cu(II) complexes are square planar, while Co(II), Ni(II), and Zn(II) complexes are tetrahedral. Magnetic susceptibility measurements and molar conductance data provide evidence for the monomeric and neutral nature of the complexes. The X-band ESR spectrum of Cu(II) complexes at 300 and 77 K were recorded. The electrochemical behavior of the complexes in MeCN at 298 K was studied. The in vitro biological screening effects of the investigated compounds were tested against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola, and Candida albicans by the well-diffusion method. Comparison of the inhibition values of the Schiff bases and their complexes indicate that the complexes exhibit higher antimicrobial activity.  相似文献   

6.
Two different metal complexes of [Co(HL)(L)(Ac)2]·4H2O (I) and [Ni2(L)2(Ac)2]·4H2O (II), have been synthesized with newly prepared amine-imine-oxime ligand [HL = 3-(4′-aminobiphenyl-4-ylimino)-butan-2-one oxime, Ac = CH3COO]. This ligand HL was prepared by the condensation of diacetylmonoxime with benzidine. The structure of the ligand and complexes have been proposed by elemental analyses, IR, 1H, and 13C NMR, electronic spectra, magnetic susceptibility measurements, mass spectra, molar conductivity and thermo gravimetric analysis. The molar conductance measurements of the complexes in DMF solution correspond to non electrolytic nature for the complexes. Octahedral and tetrahedral geometries have been determined to the complexes of Co(III) and binuclear Ni(II) respectively. The ligand and its metal complexes were tested in vitro for their biological effects. Their activities against two gram-positive (Bacillus subtilis and Staphylococcus aureus) and one fungal specie (Candida albicans) were found. They were inactive against tested gram negative bacteria. The text was submitted by authors in English.  相似文献   

7.
Few novel mixed ligand copper(II) complexes of the type [Cu(L)(Cl)2(H2O)], [Cu(L)2]Cl2, [Cu(L)L1] and [Cu(L)(phen)H2O]Cl2 (where L is the ligand obtained from the condensation of N-(2-aminoethyl)-1,3-propanediamine with m-nitrobenzaldehyde (La)/o-chlorobenzaldehyde (Lb)/benzaldehyde (Lc)/p-methoxybenzaldehyde (Ld)/p-hydroxybenzaldehyde (Le)/furfuraldehyde (Lf)/pyrrole-2-carboxaldehyde (Lg); L1 is another ligand obtained from the condensation of anthranilic acid with salicyaldehyde; phen = 1,10-phenanthroline) have been synthesized and characterized by the spectral and analytical techniques. From these data, it is found that the ligands adopt distorted octahedral geometry on metalation with Cu(II) ion. The XRD data indicate that the complexes are polycrystalline with nanosized grains. The SEM images of [Cu(La)phen(H2O)]Cl2 and [Cu(Lf)2]Cl2 complexes show that they have leaf and cauliflower like morphology. The in vitro biological screening effects of the investigated compounds have been tested against the bacteria such as Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Pseudomonas aeruginosa and Staphylococcus aureus and fungi such as Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans by the well diffusion method. A comparative study of MIC values of the Schiff base ligands and their complexes indicates that the complexes exhibit higher antimicrobial activity than the free ligands. An electrochemical study of the copper complexes containing electron withdrawing substituted ligands reveals that they prefer to bind to DNA in Cu(II) rather than Cu(I) oxidation state.  相似文献   

8.
Four new diorganotin(IV) complexes, R2SnL (L?=?La: R?=?Me 1, Ph 2; L?=?Lb: R?=?Me 3, and Ph 4), have been synthesized by reaction of hydrazone ONO donors, 5-bromo-2-hydroxybenzaldehyde furan-2-carbohydrazone (H2La) and 2-hydroxynaphthaldehyde furan-2-carbohydrazone (H2Lb) with diorganotin(IV) dichloride in the presence of a base. The compounds have been investigated by elemental analysis and IR, 1H NMR, and 119Sn NMR spectroscopies. Spectroscopic studies show that the hydrazone is a tridentate dianionic ligand, coordinating via the imine nitrogen and phenolic and enolic oxygens. The structures of H2Lb and 3 have also been confirmed by X-ray crystallography. The results show that the structure of 3 is a distorted square pyramid with imine nitrogen in apical position. The in vitro antibacterial activities of ligands and complexes have been evaluated against gram-positive (Bacillus cereus and Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. H2La and H2Lb show no activity but the diphenyltin(IV) complexes exhibit good activities towards two bacterial strains in comparison with standard bacterial drugs.  相似文献   

9.
Palladium(II) complexes of type [Pd(L)Cl2] [where, L?=?benzaldehyde-1,1-diphenyl-2-thiohydrazone (L1), salicylaldehyde-1,1-diphenyl-2-thiohydrazone (L2), acetaphenone-1,1-diphenyl-2-thiohydrazone (L3) and cyclohexanone-1,1-diphenyl-2-thiohydrazone (L4)] have been synthesized. The thiohydrazones can exist as thione-thiol tautomers and coordinate as a bidentate N–S ligand. The ligands are found to be monobasic bidentate. The complexes have been characterized by elemental analysis, IR, mass, electronic, 1H NMR spectroscopic studies. In vitro antifungal studies against fungi Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger for some complexes have also been carried out.  相似文献   

10.
One‐pot synthesis of ferrocenyl ligand, 1,1′‐bis[1,5‐methyl‐4H‐(1,3,4)‐thiadiazolo(2,3‐c)(1,2,4)triazin‐4‐one]ferrocene was prepared from the reaction of 1,1′‐diacetylferrocene with 4‐amino‐2,3‐dihydro‐6‐methyl‐3‐thioxo[1,2,4]triazin‐5(4H)one. The ligand, L, forms 1:1 complexes with Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) in good yield. Characterization of the ligand and its complexes was carried out using IR, 1H NMR, magnetic susceptibility as well as elemental analysis. Biocidal activity of the ligand and its complexes were determined against the standard fungal strains of Aspergillus niger, Cladosporium herbarum and Fusarium moniliforme using the paper disc diffusion method; and against bacterial strains of Escherichia coli and Staphylococcus aureus using viable cell counting technique. The results indicated that the complexes are biologically more active than the free ligand. The biocidal activity depends on the metal ion, concentration as well as the tested fungi and bacteria. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
A series of Co(II), Ni(II), and Cu(II) complexes have been synthesized with Schiff bases (H2LI and H2LII) derived from 8-formyl-7-hydroxy-4-methylcoumarin or 5-formyl-6-hydroxycoumarin and o-aminophenol. Structures have been proposed from elemental analyses, spectral (IR, UV-Vis, FAB-mass, and Fluorescence), magnetic, and thermal studies. The measured low molar conductance values in DMF indicate that the complexes are non-electrolytes. Elemental analyses indicate ML · 3H2O [M = Co(II), Ni(II), and Cu(II)] stoichiometry. Spectroscopic studies suggest coordination through azomethine nitrogen, phenolic oxygen of o-aminophenol, and the coumarin via deprotonation. The Schiff bases and their complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal (Aspergillus niger, Aspergillus flavus, and Cladosporium) activities by minimum inhibitory concentration (MIC) method. The redox behavior of the complexes was investigated using cyclic voltammetry (CV).  相似文献   

12.
This article reports synthesis of Co(II), Ni(II), Mn(II), Cu(II), and Zn(II) complexes with a new macrocyclic ligand 1,4,11,14-tetraazacyclonanodeca-5,10-dioxo-1,14-diene (H2L). The ligand (L1) was prepared by reaction of adipic acid and ethylenediamine in 1 : 2 ratio while the macrocycle was derived from 1,4-bis-(2′-amino-ethanamide)butane and glutaraldehyde. The synthesized complexes were characterized by elemental analysis, molar conductance, spectral analyses (1H NMR spectra, FT-IR spectra, electronic spectra, and mass spectra), magnetic susceptibility measurements, and thermogravimetric studies. On the basis of electronic spectral studies and molar conductance measurements, octahedral geometry was confirmed for Ni(II), Mn(II), and Co(II) while tetrahedral for Zn(II) and square planar for Cu(II) complexes. The TGA results revealed that the complexes exhibited higher thermal stability than the macrocycle. All the complexes were screened against bacterial and fungal strains and preliminary antimicrobial results showed that these complexes inhibited bacterial/fungal growth to a greater extent than the ligand.  相似文献   

13.
A series of Co(II), Cu(II), Mn(II) and Zn(II) bimetallic complexes have been synthesized with the schiff base ligand 2‐(bis‐2‐hydroxyl phenylidene) diimine (L) derived from the condensation of hydrazine and salicylaldehyde. The synthesized ligand and bimetallic complexes were characterized by different spectroscopic techniques. The characterization of ligand was carried out by FT‐IR, H1NMR, C13NMR and MS while the bimetallic complexes were characterized by FT‐IR and X‐ray crystallographic techniques. The complexes and ligand were employed in vitro for antifungal and antibacterial activities using disc diffusion method. Different fungal strains such as Alternaria Alternate, Aspergillus Flavus and Aspergillus Niger were used to check antifungal activities of bimetallic complexes and ligand. Similarly, the bacterial strains used were Staphylococcus Aureus, Bacillus Subbtilis and Escheria Coli. The biological studies showed that the ligand exhibited lower value of antifungal and antibacterial activities than bimetallic complexes.  相似文献   

14.
A novel azo dye ligand, 2,2′‐(1,3‐phenylenebis(diazene‐2,1‐diyl))bis(4‐chlorophenol), was synthesized from the diazotization of m ‐phenelyenediamine and coupling with p ‐chlorophenol in alkaline medium. Mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of the azo ligand (H2L) were prepared and characterized using elemental analyses, infrared spectroscopy, electron spin resonance, magnetic susceptibility, conductance measurements and thermal analyses. The UV–visible, 1H NMR and mass spectra of the ligand and its chelates were also recorded. The analytical data showed that the metal‐to‐ligand ratio in the mononuclear azo complexes was 1:1. Diffuse reflectance and magnetic moment measurements revealed the complexes to have octahedral geometry. The infrared spectral data showed that the chelation behaviour of the ligand towards transition metal ions was through phenolic oxygen and azo nitrogen atoms. The electronic spectral results indicated the existence of π → π* (phenyl rings) and n → π* (─N═N) and confirmed the mentioned structure. Molar conductivity revealed the non‐electrolytic nature of all chelates. The presence of water molecules in all complexes was supported by thermal studies. Molecular docking was used to predict the binding between H2L and the receptors of breast cancer mutant 3hb5‐oxidoreductase, crystal structure of Escherichia coli (3 t88) and crystal structure of Staphylococcus aureus (3q8u). The molecular and electronic structure of H2L was optimized theoretically and the quantum chemical parameters were calculated. In addition, the effects of the H2L azo ligand and its complexes on the inhibition of bacterial or fungal growth were evaluated. The prepared complexes had enhanced activity against bacterial or fungal growth compared to the H2L azo ligand.  相似文献   

15.
Solvation and complexation of Ni(II) with benzoic (L1), p-methoxybenzoic (L3), and isonicotinic (L) acids hydrazides in water and aqueous acetonitrile were studied. The coordination of acetonitrile with Ni(II) was qualitatively estimated, and the formation constant were determined for the complexes Ni(L1)2 +, Ni(L1)22 +, Ni(L3)2 +, Ni(L3)22 +, Ni(HL)3 +, NiL2 +, NiL(HL)3 +, and NiL2 2 +. The effects of dilution, ligand basicity, and ligand solvation on the stability of Ni(II) compounds with hydrazides of benzoic acid and its derivatives were demonstrated. The stability of the Ni(II) complexes with isonicotinic acid hydrazide is governed by dehydration of the metal ion, decrease in the donor power of the coordinating hydrazide fragment on protonation of the pyridine substituent L, formation of the intracomplex hydrogen bond between the protonated and deprotonated pyridine nitrogen atoms in NiL(HL)3 +, and stacking interaction between the heterocycles in NiL2 2 +.  相似文献   

16.
A novel macrocyclic tetradentate ligand 1,5,8,12-tetraaza-2,4,9,11-tetraphenyl-6,7:13,14-dibenzocyclohexadeca- 1,4,8,11-tetraene (L) has been synthesized. Cobalt(II), nickel(II), and copper(II) complexes of this ligand have been prepared and characterized by elemental analysis, molar conductance measurements, magnetic susceptibitity measurements, and mass, IR, electronic, and ESR spectral studies. The molar conductance measurements correspond to a nonelectrolytic nature for all the complexes, which can be formulated as [M(L)X2] (where M = Co(II), Ni(II), and Cu(II); X = Cl and NO3). On the basis of IR, electronic, and ESR spectral studies, an octahedral geometry has been assigned to the Co(II) and Ni(II) complexes, whereas a tetragonal geometry was found for the Cu(II) complexes. The investigated compounds and uncomplexed metal salts and the ligands were tested against bacterial species like Sarcina lutea, Escherchia coli, and Staphylococcus aureus. The metal complexes have higher activity than the free ligand and metal salts. The text was submitted by the authors in English.  相似文献   

17.
A series of cadmium (II) complexes with the general formula of CdLX2, where X = Cl, Br, I, SCN and N3 and L is a tetradentate N4-donor Schiff base ligand; were synthesized by a sonochemical process as a simple, cost effective and environmentally friendly method. The organic ligand was obtained by condensation reaction of triethylenetetraamine (trien) and cinnamaldehyde. The characterization of coordination compounds was carried out by FT-IR, 1HNMR, 13CNMR, UV–visible spectroscopies and then conductivity measurements. The crystal structure of the cadmium azide complex was determined by single crystal X-ray diffraction. This complex crystallizes in the monoclinic space group of C2/c. The cadmium ion is hexa-coordinated by four nitrogen atoms from the tetradendate Schiff base ligand and two terminal azide nitrogen atoms. The crystal packing and Hirshfeld surface analysis of the CdL(N3)2 complex indicates the essential role of intermolecular interactions related to azido groups in the formation of supramolecular structure. The thermal behavior of complexes was studied by TG/DTG analysis. Moreover, an antibacterial bioassay of the cadmium complexes has been performed in vitro against two gram-positive (Staphylococcus aureus and Bacillus subtilis) and two gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains. Furthermore antifungal activities of the compounds against two fungal strains of Aspergilus niger and Candida albicans were also investigated.  相似文献   

18.
Nickel(II) complexes with 2,3-dihydroxybenzaldehyde N4-substituted thiosemicarbazone ligands (H3L1–H3L4) have been synthesized and characterized with the aim of evaluating the effect of N4 substitution in the thiosemicarbazone moiety on their coordination behavior and biological activities. Two series of nickel(II) complexes with the general formulae [Ni(H3L)(H2L)]ClO4 and [Ni2(HL)2] were characterized by analytical and spectral techniques. The molecular structure of one of the complexes, namely, [Ni(H3L4)(H2L4)]ClO4 was established by single crystal X-ray diffraction studies. The crystal structure of this complex revealed that two H3L4 ligands are coordinated to nickel(II) in different modes; one as a neutral tridentate ONS ligand and the other is as a monoanionic tridentate (ONS?) ligand. The antimicrobial activities of the compounds were tested against 25 bacterial strains via the disc diffusion method, and their minimum inhibitory concentration (MIC) and minimum microbicidal concentration were evaluated using microdilution methods. With a few exceptions, most of the compounds exhibited low-to-moderate inhibitory activities against the tested bacterial strains. However, the complexes [Ni2(HL3)2] (7) and [Ni2(HL4)2] (8) indicated higher inhibitory activity against Salmonella enterica ATCC 9068 (MIC values 15.7 and <15.7 μg/ml, respectively), compared with gentamicin as the positive control (MIC 25 μg/ml). Complex (7) also inhibited Streptococcus pneumoniae more efficiently (MIC 31.2 μg/ml), compared with gentamicin (MIC > 50 μg/ml). The toxicities of the compounds were tested on brine shrimp (Artemia salina), where no meaningful toxicity level was noted for both the free ligands and the complexes. The cytotoxicities of the compounds on cell viability were determined on MCF7, PC3, A375, and H413 cancer cells in terms of IC50; complexes [Ni(H3L3)(H2L3)]ClO4 (3), [Ni2(HL3)2] (7) and [Ni2(HL4)2] (8) exhibited significant cytotoxicity on the tested cell lines.  相似文献   

19.
The reaction of 2,2′-di(2-hydroxybenzaliminoethyl) disulfide (H2L1) and 2-[(2-thioethyl)iminomethyl]phenol (H2L2) with MCl2·xH2O (M = Co, Ni, Cu) afforded the [M2(L1)Cl2] and [M(L2)]2 complexes, respectively. Their structures were determined by the data of electronic and IR spectroscopy and PM3 quantum chemical calculations. The H2L1 ligand and the complexes were studied by electrochemistry (CV and using a rotating disk electrode). The primary electronic changes are localized on the ligand fragment upon the electrochemical oxidation and reduction of the complexes. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1325–1330, July, 2007.  相似文献   

20.
设计合成了4种含不同芳香取代基团的肼基二硫代甲酸甲酯配体(2-乙酰基吡啶肼基二硫代甲酸甲酯(L1-H)、2-甲酰基吡啶肼基二硫代甲酸甲酯(L2-H)、2-甲酰基噻吩肼基二硫代甲酸甲酯(L3-H)、2-甲酰基水杨醛肼基二硫代甲酸甲酯(L4-H))的镓配合物,对它们的抑菌活性进行了测试,并讨论了配体分子中不同芳香取代基对配合物抑菌活性的影响。在模拟生理条件下,L与Ga3+生成较稳定的单核配合物[Ga(L12]NO31)、[Ga(L22]NO32)、[Ga(L32]NO33)、[Ga(L42]NO34),各配合物对金黄色葡萄球菌和大肠杆菌表现出比Ga(NO33·9H2O强的抑制活性,抑制金黄色葡萄球菌的能力高于大肠杆菌,其中,12的活性比相应配体高,其余2个配合物与其配体之间无明显活性差异。L1和L2分子中吡啶基的较强吸电子效应可能是12具有较强抑菌活性的主要原因。4种配合物抑制黑曲霉生长的活性同样高于Ga(NO33·9H2O,其中3最强,并显著高于L3,其余配合物与相应配体间无活性差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号