首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A novel surface fabrication methodology has been accomplished, aimed at efficient anodic photocurrent generation by a photoexcited porphyrin on an ITO (indium-tin oxide) electrode. The ITO electrode was submitted to a surface sol-gel process with titanium n-butoxide in order to deposit a titanium monolayer. Subsequently, porphyrins were assembled as monolayers on the titanium-treated ITO surface via phosphonate, isophthalate, and thiolate groups. Slipped-cofacial porphyrin dimers, the so-called artificial special pair at the photoreaction center, were organized through imidazolyl-to-zinc complementary coordination of imidazolylporphyrinatozinc(II) units, which were covalently immobilized by ring-closing olefin metathesis of allyl side chains. The modified surfaces were analyzed by means of X-ray photoelectron spectroscopy. Photoirradiation of the porphyrin dimer generated a large anodic photocurrent in aqueous electrolyte solution containing hydroquinone as an electron sacrificer, due to the small reorganization energy of the dimer. The use of different linker groups led to significant differences in the efficiencies of anodic photocurrent generation. The apparent flat-band potentials evaluated from the photocurrent properties at various pH values and under biased conditions imply that the band structure of the ITO electrode is modified by the anchoring species. The quantum yield for the anodic photocurrent generation by photoexcitation at the Soret band is increased to 15 %, a surprisingly high value without a redox cascade structure on the ITO electrode surface, while excitation at the Q band is not so significant. Extensive exploration of the photocurrent properties has revealed that hot injection of the photoexcited electron from the S2 level into the conduction band of the ITO electrode takes place before internal conversion to the S1* state, through the strong electronic communication of the phosphonyl anchor with the sol-gel-modified ITO surface.  相似文献   

2.
Self-assembly of citrate-stabilized gold nanoparticles (AuNPs) onto an optically transparent indium tin oxide (ITO) surface followed by neutralization of these particles using dodecanethiol as a surfactant have been demonstrated. X-ray photoelectron spectroscopic (XPS) studies revealed the partial removal of citrate ions from the immobilized AuNPs, which advances the dilution of electrostatic attraction between AuNPs and the APS (amino-terminated monolayer)-functionalized ITO surface. The resultant AuNPs restore their mobility to some extent and form small ensembles. Some of the immobilized AuNPs were completely removed from the surface due to neutralization, as confirmed by XPS studies. Interparticle distance and size of ensembles were manipulated by consecutive cycles of immobilization and neutralization of AuNPs. Controlled nanostructural fabrication progression, which leads to two-dimensional lateral growth of AuNPs, provides a method for systematically shifting the surface plasmon resonance band based on the increase in plasmon coupling among the closely placed AuNPs of an ensemble. The magnitude of shift increases with the size of ensemble. This manipulated chemical strategy offers a convenient and simple method to tune the optical properties of materials on a nanoscale.  相似文献   

3.
A self-assembled monolayer (SAM) of a C60-triosmium cluster complex Os3(CO)7(CNR)(CNR')(mu3-eta2:eta2:eta2-C60) (ZnP-C60; R = (CH2)3Si(OEt)3, R' = ZnP) on an ITO surface exhibits ideal electrochemical responses as well as remarkable enhancement of the photocurrent generation. The diazabicyclooctane (DABCO) binding (ZnP)-C60/ITO/AsA/Pt cell shows the highest photocurrent generation quantum yield (19.5%) ever reported for the molecular photovoltaic cells based on the covalently linked donor-acceptor dyad structures. The high efficiency in photocurrent generation is ascribed to an efficient electron transfer from photoexcited porphyrin to fullerene, revealed by fluorescence lifetime measurements and transient absorption decay profiles. These results provide valuable information on the new strategy for the construction of molecular photonic devices and artificial photosynthetic systems on ITO electrodes.  相似文献   

4.
通过改良的“Hummers方法”制得氧化石墨烯,利用聚二甲基硅氧烷(PDMS)弹性印章的微接触印刷技术,以Au膜和氧化石墨烯溶液为“墨水”,通过二次印章转移,分别将Au纳米粒子和氧化石墨烯(Graphene Oxide,GO)转移至修饰了(3-氨基丙基)三乙氧基硅烷(APTES)的ITO基底(APTES/ITO)表面. 利用场发射扫描电子显微镜(FE-SEM)、原子力显微镜(AFM)等表征图案,结果表明转移的AuNPs和GO组成的复合图案均匀,致密性较好. 利用表面电势显微镜(Surface Potential Microscope,SEPM,KFM)测定了各部分的表面电势,以APTES/ITO基底表面为表面电势零点,各部分表面电势大小为:APTES/ITO > GO > Au(0,-11.6,-44.2 mV).  相似文献   

5.
A systematic series of ITO electrodes modified chemically with self-assembled monolayers (SAMs) of porphyrins and porphyrin-fullerene dyads have been designed to provide valuable insight into the development of artificial photosynthetic devices. First the ITO and gold electrodes modified chemically with SAMs of porphyrins with a spacer of the same number of atoms were prepared to compare the effects of energy transfer (EN) quenching of the porphyrin excited singlet states by the two electrodes. Less EN quenching was observed on the ITO electrode as compared to the EN quenching on the corresponding gold electrode, leading to remarkable enhancement of the photocurrent generation (ca. 280 times) in the porphyrin SAMs on the ITO electrode in the presence of the triethanolamine (TEA) used as a sacrificial electron donor. The porphyrin (H(2)P) was then linked with C(60) which can act as an electron acceptor to construct H(2)P-C(60) SAMs on the ITO surface in the presence of hexyl viologen (HV(2+)) used as an electron carrier in a three electrode system, denoted as ITO/H(2)P-C(60)/HV(2+)/Pt. The quantum yield of the photocurrent generation of the ITO/H(2)P-C(60)/HV(2+)/Pt system (6.4%) is 30 times larger than that of the corresponding system without C(60): ITO/H(2)P-ref/HV(2+)/Pt (0.21%). Such enhancement of photocurrent generation in the porphyrin-fullerene dyad system is ascribed to an efficient photoinduced ET from the porphyrin singlet excited state to the C(60) moiety as indicated by the fluorescence lifetime measurements and also by time-resolved transient absorption studies on the ITO systems. The surface structures of H(2)P and H(2)P-C(60) SAMs on ITO (H(2)P/ITO and H(2)P-C(60)/ITO) have been observed successfully in molecular resolution with atomic force microscopy for the first time.  相似文献   

6.
The visible‐light response of Au nanoparticles (AuNPs) assembled on rGO through different molecular bridges was investigated by transient photocurrent generation. We prepared rGO with two self‐assembled monolayers (SAMs), one linear and the other with aromatic triazoles through a click cycloaddition reaction. A fivefold photocurrent enhancement was observed for triazole linkers over the aminopropyltrimethoxysilane (APTMS) linker. Cyclic voltammetry (CV) and impedance measurements also suggest fast electron transfer on account of the low resistance offered by the click‐modified rGO surface whereby introduction of triazoles offers the efficient bridge between the donor AuNPs and acceptor rGO.  相似文献   

7.
采用改性的TiCl4水解法制备出三种不同表面性质的TiO2-X(X=5,10,20,X表示加入NaOH的浓度,单位为mo·lL-1)样品.利用(1,10-邻菲咯啉)2-2-(2-吡啶基)苯咪唑钌混配配合物(Rup2P)作为敏化剂,制备出Rup2P/TiO2-5/ITO(铟锡金属氧化物)、Rup2P/TiO2-10/ITO和Rup2P/TiO2-20/ITO表面敏化薄膜电极.测试结果表明三种薄膜电极的光电转换效率Rup2P/TiO2-10/ITO最高,Rup2P/TiO2-20/ITO次之,Rup2P/TiO2-5/ITO最低.利用吸收光谱、表面光电压(SP)谱、荧光光谱和表面光电流作用谱等分析了Rup2P和三种TiO2的能带结构和表面性质;利用光致循环伏安和表面光电流作用谱研究了三种Rup2P/TiO2-X/ITO薄膜电极的光致界面电荷转移过程.结果表明,在光致界面电荷转移过程中,TiO2层表面氧空位对Rup2P/TiO2-X/ITO薄膜电极光致电荷转移产生重要影响.并进一步讨论了Rup2P/TiO2-X/ITO薄膜电极的光电流产生机理.  相似文献   

8.
采用无氰化学镀金法在聚二甲基硅氧烷(PDMS)印章表面镀金, 通过微接触印刷技术将PDMS印章上的Au 纳米粒子(AuNPs)分别转移到氧化铟锡(ITO)透明导电膜玻璃, 修饰了(3-巯基丙基)三甲氧基硅烷(MPTMS)的ITO基底(MPTMS/ITO)和表面电镀了铜膜的ITO(Cu/ITO)表面上, 同时形成有序的结构或者图案.通过场发射扫描电镜(FE-SEM), 原子力显微镜(AFM)和显微共聚焦激光拉曼光谱仪等对实验结果进行表征.结果表明, 该转移AuNPs的方法对基底表面特性并无特殊要求, 是一种简单、快速、无污染、低成本的AuNPs转移技术, 而且转移了AuNPs的ITO基底具有表面增强拉曼光谱(SERS)活性, 有望在SERS中有所应用.  相似文献   

9.
The gold nanoparticles (AuNPs) sputtered on indium tin oxide (ITO) were used to investigate the origin of the high catalytic activity of AuNPs toward electrooxidation of CO in alkali media. We demonstrated that the catalytic activity is closely related to the gold–ITO perimeter, which represents only a very small percentage of the total surface area of AuNPs. Increasing the perimeter-to-surface ratio of the ITO-supported AuNPs leads to an increase of catalytic activity. This work provides a potential strategy to further promote the catalytic activity of AuNPs in the electrochemical system.  相似文献   

10.
Wang J  Diao P  Zhang Q 《The Analyst》2012,137(1):145-152
A dual-region modified electrode was designed and fabricated by means of partitioned electrodeposition of gold and platinum nanoparticles on an indium tin oxide (ITO) conductive glass for dual-component electrochemical detection. The two differently modified regions were assigned to detect two analytes, separately and simultaneously. The gold nanoparticle modified ITO region (AuNPs/ITO) was used for glucose detection while the platinum nanoparticle modified ITO region (PtNPs/ITO) for nitrite detection. The glucose oxidation peak current at 0.10 V on AuNPs/ITO exhibited a linear dependence on the concentration of glucose and was used to determine the concentration of glucose in dual-detection. The nitrite reduction peak current at PtNPs/ITO showed a nonlinear dependence on the concentration of nitrite. A theoretical model combining the adsorption-controlled and the mass-transfer-controlled kinetics was proposed to quantitatively describe the nonlinear behavior. Though the presence of glucose interfered with the electrochemical detection of nitrite, it was demonstrated that the influence of glucose on nitrite detection can be corrected. On the basis of the proposed theoretical model, the simultaneous dual-detection of glucose and nitrite was accomplished at ITO electrodes partitionally modified with AuNPs and PtNPs.  相似文献   

11.
Systematic series of indium tin oxide (ITO) electrodes modified covalently with self-assembled monolayers (SAMs) of ferrocene-porphyrin-fullerene triads and porphyrin-fullerene dyads were designed to gain valuable insight into the development of molecular photovoltaic devices. The structures of SAMs on ITO have been investigated by UV/Vis absorption spectroscopy, atomic force microscopy, and cyclic voltammetry. The photoelectrochemical and photophysical (fluorescence lifetime and time-resolved transient absorption) properties were also determined. The highest quantum yield of photocurrent generation (11 %) among donor-acceptor linked systems which are covalently attached to the surface of ITO electrodes was achieved with SAMs of ferrocene-zinc porphyrin-fullerene linked triad on ITO electrodes. The quantum yields of photocurrent generation correlate well with the charge-separation efficiency and the lifetime of the charge-separated state of the porphyrin-fullerene linked systems in solution. These results provide valuable information for the construction of photonic molecular devices and artificial photosynthetic systems on ITO electrodes.  相似文献   

12.
A gold nanoparticles (AuNPs) modified indium tin oxide (ITO) film coated glass electrode was prepared via a novel electrochemical deposition technique. The UV‐visible spectrum and SEM indicated that the AuNPs on ITO electrode surface were spherical shape and quite symmetric distributed. The modified electrode exhibited excellent catalytic activity for the oxidation of morphine (MO). At optimal experimental condition, the oxidation current was responsive with the MO concentrations ranging from 8.0×10?7 to 1.6×10?5 M, the detection limit was 2.1×10 –7 M. The modified electrode also exhibited high stability and reproducibility. The average recoveries of detection MO in human urine were ranged between 91.95% and 92.23%, and the RSD was less than 3.68% (n=5).  相似文献   

13.
We have fabricated gold nanoparticle (AuNP) arrays on indium-tin oxide (ITO) substrates in a nearly one-dimensional fashion. AuNPs were site-selectively immobilized on ITO of which the surface had been patterned by a nanolithography process based on scanning probe microscopy. The fabricated nanoscale lines covered with aminosilane self-assembled monolayer served as chemisorption sites for citrate-stabilized AuNPs of 20 nm in diameter, accordingly, AuNP nanolines with a thickness of single nanoparticle diameter were spontaneously assembled on the lines. In this 1D array, the AuNPs were almost separated from each other due to the electrostatic repulsion between their negatively charged surface layers. Furthermore, a reorganization process of the immobilized AuNP arrays has been successfully demonstrated by replacing each AuNP's surface layer from citric acid to dodecanethiol. By this process, the AuNPs lost their electrostatic repulsion and became hydrophobic so as to be attracted to each other through hydrophobic interaction, resulting in reorganization of the AuNP array. By repeating the deposition and reorganization cycle, AuNPs were more densely packed. The optical absorption peak of the arrays due to their plasmonic resonance was found to shift from 526 to 590 nm in wavelength with repeating cycles, indicating that the resonance manner was changed from the single nanoparticle mode to the multiple particle mode with interparticle coupling.  相似文献   

14.
Gold nanoparticles (GNPs) were deposited directly onto the surface of indium tin oxide (ITO) thin film-coated glass by electrochemical method. It was used as a photoanode in a photoelectrochemical (PEC) cell for sensitive detection of hydroquinone (HQ) at an applied bias potential of 0.15 V vs. saturated calomel electrode. This heterostructure showed dramatically enhanced PEC properties due to the introduction of the Au/ITO interface. Under the irradiation, the marked photocurrent response was observed at the GNPs/ITO photoelectrode compared with bare ITO electrode. The anodic photocurrent could be further largely enhanced by HQ. A new PEC strategy for sensitive detection of HQ at a relative low potential was developed. The linear range for HQ determination was 0.25 to 150 μM, with a detection limit of 0.1 μM. The sensitivity on the GNPs/ITO electrode at the irradiation was ~ 3.3 times higher than that in dark. These results demonstrate that the simple GNPs/ITO electrodes have great potential for PEC analysis application.  相似文献   

15.
The photoelectrochemical properties of single-component and heterostructured layer-by-layer deposited films bearing tris(2,2'-bipyridine)ruthenium(II) (Ru) moieties were investigated by photocurrent measurements in solutions in the presence of sacrificial reagents. The photocurrent increased with an increase in the thickness of the films and then had a maximum at a thickness of 10 nm. This increase demonstrates a light-harvesting effect based on excitation energy migration among the Ru moieties to the film/electrolyte interface. A cathodic photocurrent was observed for a heterostructured film where bilayers bearing ferrocene (Fc) moieties and bilayers bearing Ru moieties were deposited on an indium tin oxide (ITO) substrate in the order (ITO/Fc/Ru). On the other hand, an anodic photocurrent was observed for the reverse order film (ITO/Ru/Fc). These results show that the direction of the photocurrent is determined by the gradient of the redox potentials formed in the heterostructured films. The internal quantum efficiency for the ITO/Ru/Fc film was twice that for the single-component film (ITO/Ru). This enhancement of the quantum efficiency is due to suppression of charge recombination by successive electron transfers in the heterostructured film.  相似文献   

16.
Hybrid nanocomposite films of ITO-coated, self-assembled porous nanostructures of tungsten trioxide (WO(3)) were fabricated using electrochemical anodization and sputtering. The morphology and chemical nature of the porous nanostructures were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS), respectively. The photoelectrochemical (PEC) properties of WO(3) porous nanostructures were studied in various alkaline electrolytes and compared with those of titania nanotubes. A new type of alkaline electrolyte containing a mixture of NaOH and KOH was proposed for the first time to the best of our knowledge and shown to improve the photocurrent response of the photoanodes. Here, we show that both the WO(3) nanostructures and titania nanotubes (used for comparison) exhibit superior photocurrent response in the mixture of NaOH and KOH than in other alkaline electrolytes. The WO(3) porous nanostructures suffered from surface corrosion resulting in a huge reduction in the photocurrent density as a function of time in the alkaline electrolytes. However, with a protective coating of ITO (100 nm), the surface corrosion of WO(3) porous nanostructures reduced drastically. A tremendous increase in the photocurrent density of as much as 340% was observed after the ITO was applied to the WO(3) porous nanostructures. The results suggest that the hybrid ITO/WO(3) nanocomposites could be potentially coupled with titania nanotubes in a multi-junction PEC cell to expand the light absorption capability in the solar spectrum for water splitting to generate hydrogen.  相似文献   

17.
Compact, rigid, five-legged fullerene derivatives C60R5Me and M(C60R5)Cp (M = Fe and Ru; R = C6H4COOH, C6H4C6H4COOH, and CH2COOH) were synthesized and arrayed on an indium-tin oxide (ITO) surface. These devices exhibit a respectable quantum yield with photocurrent generation up to 18%, and, more importantly, the direction of the photocurrent can be changed not only by the molecular structure itself but also by changing the geometric configuration of the photoactive acceptor (fullerene) and donor (metal atom) on the ITO surface.  相似文献   

18.
Tsai MC  Chen PY 《Talanta》2008,76(3):533-539
The voltammetric behavior of hexavalent chromium species (Cr(VI)) was respectively studied at ITO, bulk Au, and Au-electrodeposited electrodes in 0.01 M NaCl aqueous solutions containing 0.01 M HCl. It was found that performance degradation of the ITO electrodes toward the reduction of Cr(VI) can be suppressed by modifying the electrode surface with gold nanoparticles (AuNPs), which were formed on ITO electrodes by potential-sweeping or potential-step electrodeposition in a 0.01 M Na(2)SO(4) solution containing 1 mM HAuCl(4) x 3 H(2)O and 0.01 M H(2)SO(4). After the modification, the surface of ITO electrodes turned to the characteristically red or blue color exhibited by AuNPs. The gold nanoparticle-electrodeposited indium-tinoxide electrode (AuNP-ITO) demonstrates unique catalytic behavior, higher sensitivity and stability in the reduction of Cr(VI). Cr(VI) species was detected by either cyclic voltammetry or hydrodynamic amperometry. By cyclic voltammetry, the dependence of cathodic peak current on concentration was linear from 5 to 100 microM with a detection limit of 2 microM (sigma=3), and linearity was obtained from 0.5 to 50 microM by hydrodynamic amperometry where a constant potential of +0.2V (vs. Ag/AgCl) was applied and a batch-injection cell was employed. For hydrodynamic amperometry, the detection limit was 0.1 microM (sigma=3).  相似文献   

19.
在具有条形电极的ITO(氧化铟锡)玻璃上负载Fe3 -TiO2薄膜,得到全固态平面型ITO/Fe3 -TiO2/ITO光电催化器件.利用Keithley 2400数字源电流表对器件施以一定的偏压,以气相甲醛的降解为模型反应,对器件分别进行了空气和氮气条件下的光电催化性能测试.结果表明,甲醛的存在能够增强体系的光电流,并且在氮气下器件的光电流明显大于在空气下的光电流,说明甲醛参与了电子的迁移过程.ITO/Fe3 -TiO2/ITO器件表现出比ITO/Fe3 -TiO2/ITO器件更高的光催化活性,且前者的光电流值小于后者,说明掺杂Fe3 所引起的电子迁移率的降低远大于所引起的激子分离几率的提高.ITO/Fe3 -TiO2/ITO器件在外加偏压下活性提高,但提高的幅度没有ITO/TiO2/ITO器件明显.  相似文献   

20.
利用LB膜技术可控制备了纳米单层和多层的二氧化钛-有机钌螯合物杂化膜,并研究了上述无机-有机杂化膜修饰电极在Pt纳米团簇敏化后的光电流增强效应.实验结果表明:(1)纳米单层TiO2/[Ru(phen)2(dC18bpy)]2+(简称为TiO2-Ru)杂化膜的平均厚度为(3.6±0.5)nm;(2)在光照条件下TiO2-Ru杂化膜能有效催化还原[Pt(NH3)6]4+形成粒径位于20~160nm之间的Pt纳米团簇;(3)Pt纳米团簇的引入消除了金属钌螯合物中配体对电子传递的阻碍作用,改变了电子传递途径,从而有效减少了电子空穴对的复合,提高了Pt纳米团簇敏化的n层杂化膜修饰电极(ITO/(TiO2-Ru)n/Pt)在支持电解质中的光电流.与纳米单层TiO2-Ru杂化膜修饰的ITO电极(ITO/TiO2-Ru)相比,当工作电压为900mV时,ITO/TiO2-Ru/Pt在0.1mol·L-1的NaClO4电解质溶液中和光照(λ360nm)条件下,单位面积的光电流提高了约5倍;(4)ITO/(TiO2-Ru)n/Pt电极光电流的大小与杂化膜的层数密切相关,当TiO2-Ru杂化膜的层数从一层、二层增加到四层时,光电流呈现先升高后下降行为,这表明ITO/(TiO2-Ru)n/Pt电极的电子传递过程直接通过非电活性的二氧化钛纳米单层进行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号