首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three experiments tested listeners' ability to identify 70 diverse environmental sounds using limited spectral information. Experiment 1 employed low- and high-pass filtered sounds with filter cutoffs ranging from 300 to 8000 Hz. Listeners were quite good (>50% correct) at identifying the sounds even when severely filtered; for the high-pass filters, performance was never below 70%. Experiment 2 used octave-wide bandpass filtered sounds with center frequencies from 212 to 6788 Hz and found that performance with the higher bandpass filters was from 70%-80% correct, whereas with the lower filters listeners achieved 30%-50% correct. To examine the contribution of temporal factors, in experiment 3 vocoder methods were used to create event-modulated noises (EMN) which had extremely limited spectral information. About half of the 70 EMN were identifiable on the basis of the temporal patterning. Multiple regression analysis suggested that some acoustic features listeners may use to identify EMN include envelope shape, periodicity, and the consistency of temporal changes across frequency channels. Identification performance with high- and low-pass filtered environmental sounds varied in a manner similar to that of speech sounds, except that there seemed to be somewhat more information in the higher frequencies for the environmental sounds used in this experiment.  相似文献   

2.
A survey of data on the perception of binaurally presented sounds indicates that loudness summation across ears is less than perfect; a diotic sound is less than twice as loud as the same sound presented monaurally. The loudness model proposed by Moore et al. [J. Audio Eng. Soc. 45, 224-240 (1997)] determines the loudness of binaural stimuli by a simple summation of loudness across ears. It is described here how the model can be modified so as to give more accurate predictions of the loudness of binaurally presented sounds, including cases where the sounds at the two ears differ in level, frequency or both. The modification is based on the idea that there are inhibitory interactions between the internal representations of the signals at the two ears, such that a signal at the left ear inhibits (reduces) the loudness evoked by a signal at the right ear, and vice versa. The inhibition is assumed to spread across frequency channels. The modified model gives reasonably accurate predictions of a variety of data on the loudness of binaural stimuli, including data obtained using loudness scaling and loudness matching procedures.  相似文献   

3.
The influence of the degree of envelope modulation and periodicity on the loudness and effectiveness of sounds as forward maskers was investigated. In the first experiment, listeners matched the loudness of complex tones and noise. The tones had a fundamental frequency (F0) of 62.5 or 250 Hz and were filtered into a frequency range from the 10th harmonic to 5000 Hz. The Gaussian noise was filtered in the same way. The components of the complex tones were added either in cosine phase (CPH), giving a large crest factor, or in random phase (RPH), giving a smaller crest factor. For each F0, subjects matched the loudness between all possible stimulus pairs. Six different levels of the fixed stimulus were used, ranging from about 30 dB SPL to about 80 dB SPL in 10-dB steps. Results showed that, at a given overall level, the CPH and the RPH tones were louder than the noise, and that the CPH tone was louder than the RPH tone. The difference in loudness was larger at medium than at low levels and was only slightly reduced by the addition of a noise intended to mask combination tones. The differences in loudness were slightly smaller for the higher than for the lower F0. In the second experiment, the stimuli with the lower F0s were used as forward maskers of a 20-ms sinusoid, presented at various frequencies within the spectral range of the maskers. Results showed that the CPH tone was the least effective forward masker, even though it was the loudest. The differences in effectiveness as forward maskers depended on masker level and signal frequency; in order to produce equal masking, the level of the CPH tone had to be up to 35 dB above that of the RPH tone and the noise. The implications of these results for models of loudness are discussed and a model is presented based on neural activity patterns in the auditory nerve; this predicts the general pattern of loudness matches. It is suggested that the effects observed in the experiments may have been influenced by two factors: cochlear compression and suppression.  相似文献   

4.
The ability to localize a click train in the frontal-horizontal plane was measured in quiet and in the presence of a white-noise masker. The experiment tested the effects of signal frequency, signal-to-noise ratio (S/N), and masker location. Clicks were low-pass filtered at 11 kHz in the broadband condition, low-pass filtered at 1.6 kHz in the low-pass condition, and bandpass filtered between 1.6 and 11 kHz in the high-pass condition. The masker was presented at either -90, 0, or +90 deg azimuth. Six signal-to-noise ratios were used, ranging from -9 to +18 dB. Results obtained with four normal-hearing listeners show that (1) for all masker locations and filtering conditions, localization accuracy remains unaffected by noise until 0-6 dB S/N and decreases at more adverse signal-to-noise ratios, (2) for all filtering conditions and at low signal-to-noise ratios, the effect of noise is greater when noise is presented at +/- 90 deg azimuth than at 0 deg azimuth, (3) the effect of noise is similar for all filtering conditions when noise is presented at 0 deg azimuth, and (4) when noise is presented at +/- 90 deg azimuth, the effect of noise is similar for the broadband and high-pass conditions, but greater for the low-pass condition. These results suggest that the low- and high-frequency cues used to localize sounds are equally affected when noise is presented at 0 deg azimuth. However, low-frequency cues are less resistant to noise than high-frequency cues when noise is presented at +/- 90 deg azimuth. When both low- and high-frequency cues are available, listeners base their decision on the cues providing the most accurate estimation of the direction of the sound source (high-frequency cues). Parallel measures of click detectability suggest that the poorer localization accuracy observed when noise is at +/- 90 deg azimuth may be caused by a reduction in the detectability of the signal at the ear ipsilateral to the noise.  相似文献   

5.
Carlyon and Shackleton [J. Acoust. Soc. Am. 95, 3541-3554 (1994)] presented an influential study supporting the existence of two pitch mechanisms, one for complex tones containing resolved and one for complex tones containing only unresolved components. The current experiments provide an alternative explanation for their finding, namely the existence of across-frequency interference in fundamental frequency (F0) discrimination. Sensitivity (d') was measured for F0 discrimination between two sequentially presented 400 ms complex (target) tones containing only unresolved components. In experiment 1, the target was filtered between 1375 and 15,000 Hz, had a nominal F0 of 88 Hz, and was presented either alone or with an additional complex tone ("interferer"). The interferer was filtered between 125-625 Hz, and its F0 varied between 88 and 114.4 Hz across blocks. Sensitivity was significantly reduced in the presence of the interferer, and this effect decreased as its F0 was moved progressively further from that of the target. Experiment 2 showed that increasing the level of a synchronously gated lowpass noise that spectrally overlapped with the interferer reduced this "pitch discrimination interference (PDI)". In experiment 3A, the target was filtered between 3900 and 5400 Hz and had an F0 of either 88 or 250 Hz. It was presented either alone or with an interferer, filtered between 1375 and 1875 Hz with an F0 corresponding to the nominal target F0. PDI was larger in the presence of the resolved (250 Hz F0) than in the presence of the unresolved (88 Hz F0) interferer, presumably because the pitch of the former was more salient than that of the latter. Experiments 4A and 4B showed that PDI was reduced but not eliminated when the interferer was gated on 200 ms before and off 200 ms after the target, and that some PDI was observed with a continuous interferer. The current findings provide an alternative interpretation of a study supposedly providing strong evidence for the existence of two pitch mechanisms.  相似文献   

6.
The contribution of temporal asynchrony, spatial separation, and frequency separation to the cross-spectral fusion of temporally contiguous brief narrow-band noise bursts was studied using the Rhythmic Masking Release paradigm (RMR). RMR involves the discrimination of one of two possible rhythms, despite perceptual masking of the rhythm by an irregular sequence of sounds identical to the rhythmic bursts, interleaved among them. The release of the rhythm from masking can be induced by causing the fusion of the irregular interfering sounds with concurrent "flanking" sounds situated in different frequency regions. The accuracy and the rated clarity of the identified rhythm in a 2-AFC procedure were employed to estimate the degree of fusion of the interferring sounds with flanking sounds. The results suggest that while synchrony fully fuses short-duration noise bursts across frequency and across space (i.e., across ears and loudspeakers), an asynchrony of 20-40 ms produces no fusion. Intermediate asynchronies of 10-20 ms produce partial fusion, where the presence of other cues is critical for unambiguous grouping. Though frequency and spatial separation reduced fusion, neither of these manipulations was sufficient to abolish it. For the parameters varied in this study, stimulus onset asynchrony was the dominant cue determining fusion, but there were additive effects of the other cues. Temporal synchrony appears to be critical in determining whether brief sounds with abrupt onsets and offsets are heard as one event or more than one.  相似文献   

7.
The two experiments described here use a formant-matching task to investigate what abstract representations of sound are available to listeners. The first experiment examines how veridically and reliably listeners can adjust the formant frequency of a single-formant sound to match the timbre of a target single-formant sound that has a different bandwidth and either the same or a different fundamental frequency (F0). Comparison with previous results [Dissard and Darwin, J. Acoust. Soc. Am. 106, 960-969 (2000)] shows that (i) for sounds on the same F0, introducing a difference in bandwidth increases the variability of matches regardless of whether the harmonics close to the formant are resolved or unresolved; (ii) for sounds on different F0's, introducing a difference in bandwidth only increases variability for sounds that have unresolved harmonics close to the formant. The second experiment shows that match variability for sounds differing in F0, but with the same bandwidth and with resolved harmonics near the formant peak, is not influenced by the harmonic spacing or by the alignment of harmonics with the formant peak. Overall, these results indicate that match variability increases when the match cannot be made on the basis of the excitation pattern, but match variability does not appear to depend on whether ideal matching performance requires simply interpolation of a spectral envelope or also the extraction of the envelope's peak frequency.  相似文献   

8.
The latencies of wave V in Brain Stem Evoked Responses (BSER) elicited by a set of acoustic transients were measured. The stimuli were produced by delivering pulses to two filters, arranged in series. The filters were set so that the maximum acoustic energy in the transients, i.e., filtered clicks, occurred at 0.5, 1, 2, 4, or 8 kHz. The filtered clicks were presented via earphones at a rate of 30/s at 20, 40, or 60 dB HL to ten subjects with normal hearing. The latencies of wave V varied systematically with center frequency of the filtered clicks when they were each at the same HL. Stimuli presented at 40 dB HL produced the greatest opportunity for relating stimulus frequency to latency. The latencies for a smaller set of responses to stimuli presented at 10/s were the same as those for the principal data taken at 30/s. The changes in latency of wave V due to frequency are similar to those observed by other investigators in whole-nerve responses recorded in man.  相似文献   

9.
This study examined spatial release from masking (SRM) when a target talker was masked by competing talkers or by other types of sounds. The focus was on the role of interaural time differences (ITDs) and time-varying interaural level differences (ILDs) under conditions varying in the strength of informational masking (IM). In the first experiment, a target talker was masked by two other talkers that were either colocated with the target or were symmetrically spatially separated from the target with the stimuli presented through loudspeakers. The sounds were filtered into different frequency regions to restrict the available interaural cues. The largest SRM occurred for the broadband condition followed by a low-pass condition. However, even the highest frequency bandpass-filtered condition (3-6 kHz) yielded a significant SRM. In the second experiment the stimuli were presented via earphones. The listeners identified the speech of a target talker masked by one or two other talkers or noises when the maskers were colocated with the target or were perceptually separated by ITDs. The results revealed a complex pattern of masking in which the factors affecting performance in colocated and spatially separated conditions are to a large degree independent.  相似文献   

10.
Better place-coding of the fundamental frequency in cochlear implants   总被引:1,自引:0,他引:1  
In current cochlear implant systems, the fundamental frequency F0 of a complex sound is encoded by temporal fluctuations in the envelope of the electrical signals presented on the electrodes. In normal hearing, the lower harmonics of a complex sound are resolved, in contrast with a cochlear implant system. In the present study, it is investigated whether "place-coding" of the first harmonic improves the ability of an implantee to discriminate complex sounds with different fundamental frequencies. Therefore, a new filter bank was constructed, for which the first harmonic is always resolved in two adjacent filters, and the balance between both filter outputs is directly related to the frequency of the first harmonic. The new filter bank was compared with a filter bank that is typically used in clinical processors, both with and without the presence of temporal cues in the stimuli. Four users of the LAURA cochlear implant participated in a pitch discrimination task to determine detection thresholds for F0 differences. The results show that these thresholds decrease noticeably for the new filter bank, if no temporal cues are present in the stimuli. If temporal cues are included, the differences between the results for both filter banks become smaller, but a clear advantage is still observed for the new filter bank. This demonstrates the feasibility of using place-coding for the fundamental frequency.  相似文献   

11.
Pitch discrimination interference (PDI) refers to an impairment in the ability to discriminate changes in the fundamental frequency (F0) of a target harmonic complex, caused by another harmonic complex (the interferer) presented simultaneously in a remote spectral region. So far, PDI has been demonstrated for target complexes filtered into a higher spectral region than the interferer and containing no peripherally resolved harmonics in their passband. Here, it is shown that PDI also occurs when the target harmonic complex contains resolved harmonics in its passband (experiment 1). PDI was also observed when the target was filtered into a lower spectral region than that of the interferer (experiment 2), revealing that differences in relative harmonic dominance and pitch salience between the simultaneous target and the interferer, as confirmed using pitch matches (experiment 3), do not entirely explain PDI. When the target was in the higher spectral region, and the F0 separation between the target and the interferer was around 7% or 10%, dramatic PDI effects were observed despite the relatively large FO separation between the two sequential targets (14%-20%). Overall, the results suggest that PDI is more general than previously thought, and is not limited to targets consisting only of unresolved harmonics.  相似文献   

12.
The four experiments reported here measure listeners' accuracy and consistency in adjusting a formant frequency of one- or two-formant complex sounds to match the timbre of a target sound. By presenting the target and the adjustable sound on different fundamental frequencies, listeners are prevented from performing the task by comparing the absolute or relative levels of resolved spectral components. Experiment 1 uses two-formant vowellike sounds. When the two sounds have the same F0, the variability of matches (within-subject standard deviation) for either the first or the second formant is around 1%-3%, which is comparable to existing data on formant frequency discrimination thresholds. With a difference in F0, variability increases to around 8% for first-formant matches, but to only about 4% for second-formant matches. Experiment 2 uses sounds with a single formant at 1100 or 1200 Hz with both sounds on either low or high fundamental frequencies. The increase in variability produced by a difference in F0 is greater for high F0's (where the harmonics close to the formant peak are resolved) than it is for low F0's (where they are unresolved). Listeners also showed systematic errors in their mean matches to sounds with different high F0's. The direction of the systematic errors was towards the most intense harmonic. Experiments 3 and 4 showed that introduction of a vibratolike frequency modulation (FM) on F0 reduces the variability of matches, but does not reduce the systematic error. The experiments demonstrate, for the specific frequencies and FM used, that there is a perceptual cost to interpolating a spectral envelope across resolved harmonics.  相似文献   

13.
Gockel, Carlyon, and Plack [J. Acoust. Soc. Am. 116, 1092-1104 (2004)] showed that discrimination of the fundamental frequency (F0) of a target tone containing only unresolved harmonics was impaired when an interfering complex tone with fixed F0 was added to the target, but filtered into a lower frequency region. This pitch discrimination interference (PDI) was greater when the interferer contained resolved harmonics than when it contained only unresolved harmonics. Here, it is examined whether this occurred because, when the interferer contained unresolved harmonics, "pitch pulse asynchrony (PPA)" between the target and interferer provided a cue that enhanced performance; this was possible in the earlier experiment because both target and interferer had components added in sine phase. In experiment 1, it was shown that subjects were moderately sensitive to the direction of PPA across frequency regions. In experiments 2 and 3, PPA cues were eliminated by adding the components of the target only, or of both target and interferer, in random phase. For both experiments, an interferer containing resolved harmonics produced more PDI than an interferer containing unresolved harmonics. These results show that PDI is smaller for an interferer with unresolved harmonics even when cues related to PPA are eliminated.  相似文献   

14.
The fidelity of reproducing free-field sounds using a virtual auditory display was investigated in two experiments. In the first experiment, listeners directly compared stimuli from an actual loudspeaker in the free field with those from small headphones placed in front of the ears. Headphone stimuli were filtered using head-related transfer functions (HRTFs), recorded while listeners were wearing the headphones, in order to reproduce the pressure signatures of the free-field sounds at the eardrum. Discriminability was investigated for six sound-source positions using broadband noise as a stimulus. The results show that the acoustic percepts of real and virtual sounds were identical. In the second experiment, discrimination between virtual sounds generated with measured and interpolated HRTFs was investigated. Interpolation was performed using HRTFs measured for loudspeaker positions with different spatial resolutions. Broadband noise bursts with flat and scrambled spectra were used as stimuli. The results indicate that, for a spatial resolution of about 6 degrees, the interpolation does not introduce audible cues. For resolutions of 20 degrees or more, the interpolation introduces audible cues related to timbre and position. For intermediate resolutions (10 degrees - 15 degrees) the data suggest that only timbre cues were used.  相似文献   

15.
The octave or Deutsch illusion occurs when two tones, separated by about one octave, are presented simultaneously but alternating between ears, such that when the low tone is presented to the left ear the high tone is presented to the right ear and vice versa. Most subjects hear a single tone that alternates both between ears and in pitch; i.e., they hear a low pitched tone in one ear alternating with a high pitched tone in the other ear. The present study examined whether the illusion can be elicited by aperiodic signals consisting of low-frequency band-pass filtered noises with overlapping spectra. The amount of spectral overlap was held constant, but the high- and low-frequency content of the signals was systematically varied. The majority of subjects perceived an auditory illusion in terms of a dominant ear for pitch and lateralization by frequency, as proposed by Deutsch [(1975a) Sci. Am. 233, 92-104]. Furthermore, the salience of the illusion increased as the high frequency of the content in the signal increased. Since no harmonics were present in the stimuli, it is highly unlikely that this illusion is perceived on the basis of binaural diplacusis or harmonic binaural fusion.  相似文献   

16.
Speech recognition in noise improves with combined acoustic and electric stimulation compared to electric stimulation alone [Kong et al., J. Acoust. Soc. Am. 117, 1351-1361 (2005)]. Here the contribution of fundamental frequency (F0) and low-frequency phonetic cues to speech recognition in combined hearing was investigated. Normal-hearing listeners heard vocoded speech in one ear and low-pass (LP) filtered speech in the other. Three listening conditions (vocode-alone, LP-alone, combined) were investigated. Target speech (average F0=120 Hz) was mixed with a time-reversed masker (average F0=172 Hz) at three signal-to-noise ratios (SNRs). LP speech aided performance at all SNRs. Low-frequency phonetic cues were then removed by replacing the LP speech with a LP equal-amplitude harmonic complex, frequency and amplitude modulated by the F0 and temporal envelope of voiced segments of the target. The combined hearing advantage disappeared at 10 and 15 dB SNR, but persisted at 5 dB SNR. A similar finding occurred when, additionally, F0 contour cues were removed. These results are consistent with a role for low-frequency phonetic cues, but not with a combination of F0 information between the two ears. The enhanced performance at 5 dB SNR with F0 contour cues absent suggests that voicing or glimpsing cues may be responsible for the combined hearing benefit.  相似文献   

17.
Previous experiments on the perception of initial stops differing in voice-onset time have used sounds where the boundary between aspiration and voicing is clearly marked by a variety of acoustic events. In natural speech these events do not always occur at the same moment and there is disagreement among phoneticians as to which mark the onset of voicing. The three experiments described here examine how the phoneme boundary between syllable-initial, prestress /b/ and /p/ is influenced by the way in which voicing starts. In the first experiment the first 30 ms of buzz excitation is played at four different levels relative to the steady state of the vowel and with two different frequency distributions: In the F1-only conditions buzz is confined to the first formant, whereas in the F123 conditions all three formants are excited by buzz. The results reject the hypothesis that voicing is perceived to start when periodic excitation is present in the first formant. The results of the third experiment show also that buzz excitation confined to the fundamental frequency for 30 ms before the onset of full voicing (formant excitation) has little effect on the voicing boundary. The second experiment varies aspiration noise intensity and buzz onset intensity independently. Together with the first experiment it shows that: (1) at all buzz onset levels a change in aspiration intensity moves the boundary by about the 0.43 ms/dB found by Repp [Lang. Speech 27, 173-189 (1979)]; (2) when buzz onsets at levels greater than - 15 dB relative to the final vowel level, changes in buzz onset level again move the /b/-/p/ boundary by the same amount; (3) when buzz onsets at levels less than - 15 dB relative to the vowel, decreasing the buzz onset level gives more /p/- percepts than Repp's ratio predicts. This last result, taken with the results of the first experiment, may reflect a decision based on overall intensity about when voicing has started.  相似文献   

18.
Three experiments investigated the relationship between harmonic number, harmonic resolvability, and the perception of harmonic complexes. Complexes with successive equal-amplitude sine- or random-phase harmonic components of a 100- or 200-Hz fundamental frequency (f0) were presented dichotically, with even and odd components to opposite ears, or diotically, with all harmonics presented to both ears. Experiment 1 measured performance in discriminating a 3.5%-5% frequency difference between a component of a harmonic complex and a pure tone in isolation. Listeners achieved at least 75% correct for approximately the first 10 and 20 individual harmonics in the diotic and dichotic conditions, respectively, verifying that only processes before the binaural combination of information limit frequency selectivity. Experiment 2 measured fundamental frequency difference limens (f0 DLs) as a function of the average lowest harmonic number. Similar results at both f0's provide further evidence that harmonic number, not absolute frequency, underlies the order-of-magnitude increase observed in f0 DLs when only harmonics above about the 10th are presented. Similar results under diotic and dichotic conditions indicate that the auditory system, in performing f0 discrimination, is unable to utilize the additional peripherally resolved harmonics in the dichotic case. In experiment 3, dichotic complexes containing harmonics below the 12th, or only above the 15th, elicited pitches of the f0 and twice the f0, respectively. Together, experiments 2 and 3 suggest that harmonic number, regardless of peripheral resolvability, governs the transition between two different pitch percepts, one based on the frequencies of individual resolved harmonics and the other based on the periodicity of the temporal envelope.  相似文献   

19.
These experiments measure the ability to detect a change in the relative phase of a single component in a harmonic complex tone. Complex tones containing the first 20 harmonics of 50, 100, or 200 Hz, all at equal amplitude, were used. All of the harmonics except one started in cosine phase. The remaining harmonic started in cosine phase, but was shifted in phase half-way through either the first or the second of the two stimuli comprising a trial. The subject had to identify the stimulus containing the phase-shifted component. For normally hearing subjects tested at a level of 70 dB SPL per component, thresholds for detecting the phase shift [i.e., phase difference limens (DLs)] were smallest (2 degrees-4 degrees) for harmonics above the eighth and for the lowest fundamental frequency (F0). Changes in phase were not detectable for harmonic numbers below three or four at the lowest F0 and below 5-13 at the highest F0. The DLs increased slightly for the highest harmonics in the complexes. The DLs increased markedly with decreasing level, except for the highest harmonic, where only a small effect of level was found. Subjects reported that the phase-shifted harmonic appeared to "pop out" and was heard with a pure-tone quality. A pitch-matching experiment demonstrated that the pitch of this tone corresponded to the frequency of the phase-shifted component. For the highest harmonic, the phase shift was associated with a downward shift of the edge pitch heard in the reference (all cosine phase) stimulus. When the phases of the components in the reference stimulus were randomized, phase DLs were much higher (and often impossible to measure), the pop-out phenomenon was not observed, and no edge pitch was heard. Subjects with unilateral cochlear hearing impairment generally showed poorer phase sensitivity in their impaired than in their normal ears, when the two ears were compared at equal sound-pressure levels. However, at comparable sensation levels, the impaired ears sometimes showed lower phase DLs. The results are explained by considering the waveforms that would occur at the outputs of the auditory filters in response to these stimuli.  相似文献   

20.
The effect of the filter bank on fundamental frequency (F0) discrimination was examined in four Nucleus CI24 cochlear implant subjects for synthetic stylized vowel-like stimuli. The four tested filter banks differed in cutoff frequencies, amount of overlap between filters, and shape of the filters. To assess the effects of temporal pitch cues on F0 discrimination, temporal fluctuations were removed above 10 Hz in one condition and above 200 Hz in another. Results indicate that F0 discrimination based upon place pitch cues is possible, but just-noticeable differences exceed 1 octave or more depending on the filter bank used. Increasing the frequency resolution in the F0 range improves the F0 discrimination based upon place pitch cues. The results of F0 discrimination based upon place pitch agree with a model that compares the centroids of the electrical excitation pattern. The addition of temporal fluctuations up to 200 Hz significantly improves F0 discrimination. Just-noticeable differences using both place and temporal pitch cues range from 6% to 60%. Filter banks that do not resolve the higher harmonics provided the best temporal pitch cues, because temporal pitch cues are clearest when the fluctuation on all channels is at F0 and preferably in phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号