首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combined monaural and binaural masking release   总被引:1,自引:0,他引:1  
Stimulus conditions were examined where both across-frequency [comodulation masking release (CMR)] and across-ear [binaural masking-level difference (BMLD)] cues were available, as well as conditions where only one of these cue types was available. The main goal of the study was to determine how the two types of cues combine. The effects of comodulation were assessed either by modulating a masking noise and manipulating its bandwidth (experiment 1) or by using two comodulated narrow bands of noise separated in frequency (experiment 2). The masker was always No, and the 500-Hz pure-tone signal was either So or S pi. The effect of the frequency of modulation was examined either by changing the frequency of the modulating stimulus (experiment 1) or by changing the bandwidth of the comodulated narrow-band noise (experiment 2). Four of six subjects showed greater masking release when both BMLD and CMR cues were available than for either type of cue alone, whereas the other two subjects did not show an ability to combine the two cues for additional advantage. For the subjects who were able to combine the two types of cue, the additional advantage was greater for low frequencies of modulation. The results indicate that one component of CMR may be based upon across-frequency envelope comparisons at a stage of processing after binaural analysis.  相似文献   

2.
Masking noise well separated in frequency from the signal may improve the detectability of the signal if the masking noise is modulated. This effect is referred to as co-modulation masking release (CMR). The present experiments examine the effect of across-frequency differences in masking noise level on CMR. Three experiments were performed, each using a different method to create modulated noise stimuli having across-frequency differences in the spectrum level. All stimulation was monaural. Experiment I used a notched noise method (selectively reducing the level for the critical band centered on the signal). Experiment II used a method in which the level of a 100-Hz-wide masker centered on the signal was varied, and flanking noise bands were of constant level. Experiment III used a method in which flanking noise bands were varied in level, and the 100-Hz-wide masker centered on the signal was of constant level. The signal was a 1000-Hz, 300-ms pure tone. The CMR effect was negated by small spectral notches centered on the signal (experiment I). However, CMR proved to be relatively robust to across-frequency level differences in experiments II and III (a CMR effect occurred for across-frequency differences in spectrum level as great as 20 dB). Low CMR's obtained in experiment I were probably due to relatively poor correlation of across-frequency modulation pattern which occurred with notched noise. The results of experiments II and III suggest that the fluctuation pattern is of primary importance in providing release from masking, and that information on absolute levels, coded across frequency, is of less importance.  相似文献   

3.
A series of experiments was performed to study the ability of the ear to code the temporal envelope of a waveform as demonstrated by comodulation masking release (CMR). The stimulus for all experiments was composed of a tone-burst signal, a 100-Hz-wide masker band centered at the signal frequency, and a second 100-Hz-wide noise band of variable frequency, the cue band. The cue band had a temporal envelope which was either correlated with or independent of that of the masker. The signal was a 100-Hz tone burst for most experiments. For the monotic stimulus, the correlated cue band results in lowered signal detection thresholds over a range extending from around 2/3 oct below the signal frequency to 1/3 oct above that frequency. When measured dichotically, with the signal and masker band in one ear and the cue band in the opposite ear, that effective range is expanded but the detection threshold shifts are a bit smaller. The greatest CMR is observed when the stimulus is presented diotically. With regard to effects of level and frequency, our data show CMR increasing with increasing stimulus level for a cue band lower in frequency than the signal, but show little effect of level for a cue band higher in frequency. Similarly, CMR increases with increasing stimulus frequency when the cue band is lower in frequency, but shows little effect of frequency for a cue band higher in frequency.  相似文献   

4.
The masking-level difference (MLD) for a 500-Hz monaural pure-tone signal was examined as a function of the interaural phase shift of a 100-Hz-wide noise band centered on 500 Hz. Results indicated that the MLD decreased in magnitude as the interaural phase shift of the masker increased. In a second experiment, the 100-Hz-wide noise band was used as both the masker and the signal in order to examine the detection cues of interaural time difference and interaural level difference separately. Again, the interaural phase of the masker was varied, and an Sm signal was presented. Results indicated that the MLD decreased as a function of increasing masker interaural temporal difference for the time cue, but that the MLD did not change systematically for the level cue. The deterioration of binaural detection as a function of increasing masker interaural phase difference was not as great as that which has been reported in localization and lateralization experiments.  相似文献   

5.
A series of four experiments was undertaken to ascertain whether signal threshold in frequency-modulated noise bands is dependent upon the coherence of modulation. The specific goal was to determine whether a masking release could be obtained with frequency modulation (FM), analogous to the comodulation masking release (CMR) phenomenon observed with amplitude modulation (AM). It was hypothesized that an across-frequency grouping process might give rise to such an effect. In experiments 1-3, maskers were composed of three noise bands centered on 1600, 2000, and 2400 Hz; these were either comodulated or noncomodulated with respect to both FM and AM. In experiment 1, the modulation was sinusoidal, and the signal was a 2000-Hz pure tone; in experiment 2, the modulation was random, and the signal was an FM noise band centered on 2000 Hz. The results obtained showed that, given sufficient width of modulation, thresholds were lower in a coherent FM masker than in an incoherent FM masker, regardless of the pattern of AM or signal type. However, thresholds in multiband maskers were usually elevated relative to that in a single-band masker centered on the signal. Experiment 3 demonstrated that coherent FM could be discriminated from incoherent FM. Experiment 4 gave similar patterns of results to the respective conditions of experiments 2 and 3, but for an inharmonic masker with bands centered on 1580, 2000, and 2532 Hz. While within-channel processes could not be entirely excluded from contributing to the present results, the experimental conditions were designed to be minimally conducive to such processes.  相似文献   

6.
Binaural detection was examined for a signal presented in a narrow band of noise centered on the on-signal masking band (OSB) or in the presence of flanking noise bands that were random or comodulated with respect to the OSB. The noise had an interaural correlation of 1.0 (No), 0.99 or 0.95. In No noise, random flanking bands worsened Spi detection and comodulated bands improved Spi detection for some listeners but had no effect for other listeners. For the 0.99 or 0.95 interaural correlation conditions, random flanking bands were less detrimental to Spi detection and comodulated flanking bands improved Spi detection for all listeners. Analyses based on signal detection theory indicated that the improvement in Spi thresholds obtained with comodulated bands was not compatible with an optimal combination of monaural and binaural cues or to across-frequency analyses of dynamic interaural phase differences. Two accounts consistent with the improvement in Spi thresholds in comodulated noise were (1) envelope information carried by the flanking bands improves the weighting of binaural cues associated with the signal; (2) the auditory system is sensitive to across-frequency differences in ongoing interaural correlation.  相似文献   

7.
The aim of this study was to examine whether the scheme of across-frequency comparison underlying comodulation masking release (CMR) is sensitive to the placement of the signal in the array of comodulating bands. This was addressed using the paradigm of signal-frequency uncertainty. In the first experiment, maskers were constructed of linearly spaced sinusoidally amplitude-modulated tones, and the signal was a pure tone presented at one of five frequencies. A small uncertainty effect was observed for the noncomodulated masker, but no significant effect was observed for the comodulated masker. In the second experiment, the maskers were constructed of logarithmically spaced noise bands, and the signal was a pure tone presented at one of seven frequencies. In these conditions, an uncertainty effect was observed in both noncomodulated and comodulated maskers, which was larger than that observed in experiment 1. The results were interpreted as indicating that the mechanism of across-frequency comparison underlying CMR is sensitive to signal location.  相似文献   

8.
This paper examines some of the factors that can affect the magnitude of comodulation masking release (CMR). In experiment I, psychometric functions were measured for the detection of a 1-kHz sinusoidal signal in a "multiplied" narrow-band noise centered at 1 kHz (reference condition) and the same noise with two comodulated flanking bands added. The functions were slightly steeper for the comodulated than for the reference masker. Thus CMRs measured at a high percent correct point were slightly (0.4 dB) larger than CMRs measured at a low percent correct point. Large individual differences were found for the reference masker but not for the comodulated masker. Experiment II compared CMRs obtained with narrow-band Gaussian noise and multiplied noise, using a single flanking band. For a flanking band remote from the signal frequency, the CMRs were smaller and more variable for the multiplied noise than for the Gaussian noise. This variability arose mainly from individual differences in the reference condition. Experiment III compared growth-of-masking functions for a signal centered in Gaussian noise and multiplied noise. Thresholds were lower for the multiplied than for the Gaussian noise, and the differences were greatest at high noise levels. The results are consistent with the idea that, for multiplied noise, some subjects can detect a change in the distribution of the envelope of the stimulus, when the signal is added to the masker. Such subjects have low thresholds in the reference condition, and give small CMRs. Other subjects are relatively insensitive to this cue. They have higher thresholds in the reference condition, and give larger CMRs. For Gaussian noise, thresholds for the reference condition are relatively stable across subjects and CMRs tend to be substantial, even for flanking-band frequencies remote from the signal frequency.  相似文献   

9.
Comodulation masking release (CMR) refers to an improvement in the detection threshold of a signal masked by noise with coherent amplitude fluctuation across frequency, as compared to noise without the envelope coherence. The present study tested whether such an advantage for signal detection would facilitate the identification of speech phonemes. Consonant identification of bandpass speech was measured under the following three masker conditions: (1) a single band of noise in the speech band ("on-frequency" masker); (2) two bands of noise, one in the on-frequency band and the other in the "flanking band," with coherence of temporal envelope fluctuation between the two bands (comodulation); and (3) two bands of noise (on-frequency band and flanking band), without the coherence of the envelopes (noncomodulation). A pilot experiment with a small number of consonant tokens was followed by the main experiment with 12 consonants and the following masking conditions: three frequency locations of the flanking band and two masker levels. Results showed that in all conditions, the comodulation condition provided higher identification scores than the noncomodulation condition, and the difference in score was 3.5% on average. No significant difference was observed between the on-frequency only condition and the comodulation condition, i.e., an "unmasking" effect by the addition of a comodulated flaking band was not observed. The positive effect of CMR on consonant recognition found in the present study endorses a "cued-listening" theory, rather than an envelope correlation theory, as a basis of CMR in a suprathreshold task.  相似文献   

10.
These experiments examine how comodulation masking release (CMR) varies with masker bandwidth, modulator bandwidth, and signal duration. In experiment 1, thresholds were measured for a 400-ms, 2000-Hz signal masked by continuous noise varying in bandwidth from 50-3200 Hz in 1-oct steps. In one condition, using random noise maskers, thresholds increased with increasing bandwidth up to 400 Hz and then remained approximately constant. In another set of conditions, the masker was multiplied (amplitude modulated) by a low-pass noise (bandwidth varied from 12.5-400 Hz in 1-oct steps). This produced correlated envelope fluctuations across frequency. Thresholds were generally lower than for random noise maskers with the same bandwidth. For maskers less than one critical band wide, the release from masking was largest (about 5 dB) for maskers with low rates of modulation (12.5-Hz-wide low-pass modulator). It is argued that this release from masking is not a "true" CMR but results from a within-channel cue. For broadband maskers (greater than 400 Hz), the release from masking increased with increasing masker bandwidth and decreasing modulator bandwidth, reaching an asymptote of 12 dB for a masker bandwidth of 800 Hz and a modulator bandwidth of 50 Hz. Most of this release from masking can be attributed to a CMR. In experiment 2, the modulator bandwidth was fixed at 12.5 Hz and the signal duration was varied. For masker bandwidths greater than 400 Hz, the CMR decreased from 12 to 5 dB as the signal duration was decreased from 400 to 25 ms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The detectability of a pure-tone signal masked by a band of noise centered on the signal can be improved by the addition of flanking noise bands, provided that the temporal envelopes of the flanking bands are correlated with that of the on-signal band. This phenomenon is referred to as comodulation masking release (CMR). The present study examined CMR in conditions in which some flanking noise bands were comodulated with the on-signal band, but other flanking bands (termed "deviant" bands) were not. Past research has indicated that CMR is often substantially reduced when deviant bands are present at spectral locations close to the signal frequency. An investigation was undertaken to determine whether the disruptive effects of such bands could be reduced by factors related to auditory grouping. The signal frequency was 100 Hz. In one condition, only 20-Hz-wide comodulated bands, centered on 400, 600, 800, 1000, 1200, 1400, and 1600 Hz, were present. The CMR for this condition, referenced to threshold for the on-signal band only, was approximately 15 dB. In a second condition, two deviant bands were added at 900 and 1100 Hz; their presence reduced the CMR to only 3-4 dB. The number of deviant bands was then increased progressively, from two to eight bands. Deviant bands either shared a common envelope (codeviant), or had unique envelopes (multideviant). The number of bands that were comodulated with the on-signal band was held constant at six.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The threshold for a signal masked by a narrow band of noise centered at the signal frequency (the on-frequency band) may be reduced by adding to the masker a second band of noise (the flanking band) whose envelope is correlated with that of the first band. This effect is called comodulation masking release (CMR). These experiments examine two questions. (1) How does the CMR vary with the number and ear of presentation of the flanking band(s)? (2) Is it possible to obtain a CMR when a binaural masking level difference (BMLD) is already present, and vice versa? Thresholds were measured for a 400-ms signal in a continuous 25-Hz-wide noise centered at signal frequencies (fs) of 250, 1000, and 4000 Hz. This masker was presented either alone or with one or more continuous flanking bands whose envelopes were either correlated or uncorrelated with that of the on-frequency band; their frequencies ranged from 0.5fs to 1.5fs. CMRs were measured for six conditions in which the signal, the on-frequency band, and the flanking band(s) were presented in various monaural and binaural combinations. When a single flanking band was used, the CMR was typically around 2-3 dB. The CMR increased to 5-6 dB if an additional flanking band was added. The effect of the additional band was similar whether it was in the same ear as the original band or in the opposite ear. At the lowest signal frequency, a large CMR was observed in addition to a BMLD and vice versa. At the highest signal frequency, the extra release from masking was small. The results are interpreted in terms of the cues producing the CMR and the BMLD.  相似文献   

13.
This study investigated comodulation detection differences (CDD) in children (ages 4.8-10.1 years) and adults. The signal was 30-Hz wide band of noise centered on 2 kHz, and the masker consisted of six 30-Hz wide bands of noise spanning center frequencies from 870 to 4160 Hz. The envelopes of the masking bands were always comodulated, and the envelope of the signal was either comodulated or random with respect to the masker. In some conditions, the maskers were gated on prior to the signal in order to minimize effects related to perceptual fusion of the signal and masker. CDD was computed as the difference between signal detection thresholds in conditions where all bands were comodulated and conditions where the envelope of the signal was random with respect to the envelopes of the maskers. Values of CDD were generally small in children compared to adults. In contrast, masking release related to masker/signal onset asynchrony was comparable across age groups. The small CDDs in children are discussed in terms of sensitivity to comodulation as a perceptual fusion cue and informational masking associated with the detection of a signal in a complex background, an effect that is ameliorated by asynchronous onset.  相似文献   

14.
In experiment I, thresholds for 400-ms sinusoidal signals were measured in the presence of a continuous 25-Hz-wide noise centered at signal frequencies (fs) ranging from 250 to 8000 Hz in 1-oct steps. The masker was presented either alone or together with a second continuous 25-Hz-wide band of noise (the flanking band) whose envelope was either correlated with that of the on-frequency band or was uncorrelated; its center frequency ranged from 0.5 fs to 1.5 fs. The flanking band was presented either in the same ear (monotic condition) as the signal plus masker or in the opposite ear (dichotic condition). The on-frequency band and the flanking band each had an overall level of 67 dB SPL. The comodulation masking release, CMR (U-C), is defined as the difference between the thresholds for the uncorrelated and correlated conditions. The CMR (U-C) showed two components: a broadly tuned component, occurring at all signal frequencies and all flanking-band frequencies, and occurring for both monotic and dichotic conditions; and a component restricted to the monotic condition and to flanking-band frequencies close to fs. This sharply tuned component was small for low signal frequencies, increased markedly at 2000 and 4000 Hz, and decreased at 8000 Hz. Experiment II showed that the sharply tuned component of the CMR (U-C) was slightly reduced in magnitude when the level of the flanking band was 10 dB above that of the on-frequency band and was markedly reduced when the level was 10 dB below, whereas the broadly tuned component and the dichotic CMR (U-C) were only slightly affected. Experiment III showed that the sharply tuned component of the CMR (U-C) was markedly reduced when the bandwidths of the on-frequency and flanking bands were increased to 100 Hz, while the broadly tuned component and the dichotic CMR (U-C) decreased only slightly. The argument here is that the sharply tuned component of the monotic CMR (U-C) results from beating between the "carrier" frequencies of the two masker bands. This introduces periodic zeros in the masker envelope, which facilitate signal detection. The broadly tuned component, which is probably a "true" CMR, was only about 3 dB.  相似文献   

15.
These experiments on across-channel masking (ACM) and comodulation masking release (CMR) were designed to extend the work of Grose and Hall [J. Acoust. Soc. Am. 85, 1276-1284 (1989)] on CMR. They investigated the effect of the temporal position of a brief 700-Hz signal relative to the modulation cycle of a 700-Hz masker 100% sinusoidally amplitude modulated (SAM) at a 10-Hz rate, which was either presented alone (reference masker) or formed part of a masker consisting of the 3rd to 11th harmonics of a 100-Hz fundamental. In the harmonic maskers, each harmonic was either SAM with the same 10-Hz modulator phase (comodulated masker) or with a shift in modulator phase of 90 degrees for each successive harmonic (phase-incoherent masker). When the signal was presented at the dips of the envelope of the 700-Hz component, the comodulated masker gave lower thresholds than the reference masker, while the phase-incoherent masker gave higher thresholds, i.e., a CMR was observed. No CMR was found when the signal was presented at the peaks of the envelope. In experiment 1, we replicated the experiment of Grose and Hall, but with an additional condition in which the 600- and 800-Hz components were removed from the masker, in order to investigate the role of within-channel masking effects. The results were similar to those of Grose and Hall. In experiment 2, the signal was added at the peaks of the envelope of the 700-Hz component, but in antiphase to the carrier of that component and at a level chosen to transform the peaks into dips. No CMR was found. Rather, performance was worse for both the comodulated and phase-incoherent maskers than for the reference masker. This was true even when the flanking components in the maskers were all remote in frequency from 700 Hz. In experiment 3, the masker components were all 50% SAM and the signal was added in antiphase at a dip of the envelope of the 700-Hz component, thus making the dip deeper. Performance was worse for the phase-incoherent than for the reference masker and was worse still for the comodulated masker. The results of all three experiments indicate strong ACM effects. CMR was found only when the signal was placed in the dips of the masker envelope and when it produced an increase in level relative to that in adjacent bands.  相似文献   

16.
Waveforms that yield comodulation masking release (CMR) when they are presented simultaneously with a signal were used in a standard forward-masking procedure. The signal was a 25-ms sample of a 2500-Hz tone. The masker was a band of noise centered at 2500 Hz, 100 Hz in width, and 200 ms in duration. Presented with the masker were two or four cue bands, each 100 Hz wide and centered at various distances from the masker band. These cue bands either all had the same temporal envelope as the masker band (correlated condition) or their common envelope was different from that of the masker band (uncorrelated condition). In the initial experiments, (1) detectability of the tonal signal was 7-18 dB better when the masker band was accompanied by cue bands than when it was not--an effect that would be expected from past research on lateral suppression--but further, (2) the signal was about 3 dB more detectable in the correlated conditions than in the uncorrelated conditions. In follow-up experiments, these CMR-like differences between the correlated and uncorrelated conditions were substantially reduced (although not eliminated) by presenting a contralateral, wideband noise that was gated synchronously with the masker and/or cue bands. The implications are that the initial results were attributable in part to the "confusion effects" known to exist in certain temporal-masking situations, and that listeners are able to obtain greater information about the temporal extent of a masker band from correlated cue bands than from uncorrelated bands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
These experiments were intended to determine whether comodulation masking release (CMR) occurs for maskers that are modulated in frequency rather than in amplitude. In experiment I, thresholds for a sinusoidal signal were measured in the presence of two continuous sinusoidal maskers: one was centered at the signal frequency (1.0 kHz), and the other was positioned at flanking frequencies ranging from 0.5 to 2.0 kHz. The two maskers were frequency modulated (FM) by the same low-pass-noise modulator (correlated condition) or by independent noise modulators (uncorrelated condition). Thresholds were the same for the correlated and uncorrelated maskers, i.e., no CMR occurred. This was also true when the flanking band was presented in the ear opposite to that containing the signal and the on-frequency masking band. In experiment II, 25-Hz-wide noise maskers were used. The on-frequency band was sinusoidally frequency modulated, while the off-frequency band either had the same FM or no FM. Thresholds were similar for the two conditions, again indicating that no CMR occurred. The results suggest that, unlike amplitude modulation, correlated FM of the masker in different frequency bands does not give rise to a release from masking.  相似文献   

18.
Previous data on the masking level difference (MLD) have suggested that NoSpi detection for a long-duration signal is dominated by signal energy occurring in masker envelope minima. This finding was expanded upon using a brief 500-Hz tonal signal that coincided with either the envelope maximum or minimum of a narrow-band Gaussian noise masker centered at 500 Hz, and data were collected at a range of masker levels. Experiment 1 employed a typical MLD stimulus, consisting of a 30-ms signal and a 50-Hz-wide masker with abrupt spectral edges, and experiment 2 used stimuli generated to eliminate possible spectral cues. Results were quite similar for the two types of stimuli. At the highest masker level the MLD for signals coinciding with masker envelope minima was substantially larger than that for signals coinciding with envelope maxima, a result that was primarily due to decreased NoSpi thresholds in masker minima. For most observers this effect was greatly reduced or eliminated at the lowest masker level. These level effects are broadly consistent with the presence of physiological background noise and with a level-dependent binaural temporal window. Comparison of these results with predictions of a published model suggest that basilar-membrane compression alone does not account for this level effect.  相似文献   

19.
The phenomenon of comodulation masking release (CMR) was studied in a series of experiments. When the relative level of the correlated cue band was more than about 10 dB less than that of the masker band, the CMR was abolished. When the duration of the tonal signal was varied with continuous maskers and cues, the course of the standard temporal-integration function (about -10 dB/decade) was followed by both the correlated-cue and the uncorrelated-cue conditions. In a burst masker paradigm employing several burst durations, the data for the correlated-cue condition closely followed the previously determined temporal-integration function. Finally, when the cue band was time delayed more than about 1.6 ms, the CMR began to decline, and it was abolished somewhere between 3 and 15 ms of delay, depending upon the subject. This latter outcome was essentially the same for masker and cue bands of both 75 and 100 Hz in width; in neither instance was there evidence of a cyclic, autocorrelation-like pattern following the period of the envelope. Supplementary experiments revealed two facts: The detectability of a masked narrow-band signal is not improved by the simultaneous presence of a correlated (or uncorrelated) noise band, and a small CMR can be obtained under conditions of forward masking.  相似文献   

20.
Comodulation masking release for a 700-Hz pure-tone signal was investigated as a function of the number and spectral positions of 20-Hz-wide comodulated flanking bands. In the first experiment, all stimuli were presented diotically. CMR was examined as a function of the number of flanking bands present, in conditions where the bands were arranged symmetrically around the signal frequency, were below the signal frequency, or were above the signal frequency. The number of flanking bands ranged from one to eight, and the magnitude of the diotic CMR ranged from approximately 5-16 dB. The results indicated: (1) bands closer to the signal resulted in larger masking release, and (2) more bands gave rise to larger CMR (but with diminishing returns above two flanking bands). Two additional sets of diotic conditions were examined and compared to the condition where all eight comodulated flanking bands were present: In one set of conditions, two of the eight flanking bands were removed; in the other set of conditions, two of the eight flanking bands were replaced with bands (termed "deviant" bands) that were not comodulated with respect to the other bands. There was very little effect of reducing eight bands to six, even when the removed bands were relatively near the signal frequency; however, CMR was substantially reduced when deviant bands were introduced, particularly when the deviant bands were placed relatively near the signal frequency. These reductions in CMR were slightly greater when each of the deviant bands had a unique modulation pattern (bideviant bands) than when the two deviant bands themselves shared the same modulation pattern (codeviant bands). In the second experiment, dichotic conditions were examined where the number and spectral positions of the flanking bands in the nonsignal ear were varied (the signal ear received only a 20-Hz-wide noise band centered on the signal frequency). The magnitude of the dichotic CMR ranged from approximately 2-10 dB, depending on condition. Effects of proximity and the number of flanking bands were similar to the effects obtained in diotic conditions. For both the diotic and the dichotic data, the effects of proximity were more consistent with an interpretation based upon across-channel processing than upon a within-channel interaction. The results obtained using deviant bands indicate that it is difficult for the auditory system to disregard the modulation pattern of flanking bands that differ from the modulation pattern of the on-signal band, particularly if such bands are proximal to the signal frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号