首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
李铸衡  刘霞  刘殿骏  王振新 《应用化学》2016,33(11):1253-1264
蛋白质微阵列芯片能够高通量监测生物毒素、分析宿主-微生物相互作用和抗原-抗体相互作用、筛选疾病生物标志物,因此有望成为体外诊断的主要技术之一并在病原体感染、自身免疫性疾病、神经退行性疾病和癌症等疾病的精准医疗中发挥重要作用。 本文通过对最近发表的相关研究成果分析,总结了蛋白质微阵列芯片在临床分析中新进展,分析了其在实际应用中所面临的技术挑战并探讨了相应的解决方案。  相似文献   

2.
监测肿瘤标志物水平变化是评估肿瘤治疗效果的重要方法.基于石墨烯复合材料构建的电化学免疫传感器可实现对肿瘤标志物的检测,检测灵敏度高、特异性好,是快速、准确分析肿瘤标志物含量的理想检测工具.本文重点阐述了石墨烯复合材料的电化学免疫传感器在肿瘤标志物检测中的应用进展.总结了其在肿瘤标志物检测中应用的优势和不足,最后对基于石...  相似文献   

3.
表面等离子体共振(SPR)技术是20世纪90年代发展起来的一种新型技术,应用SPR原理可检测生物传感芯片上配位体与分析物之间的相互作用情况,在生命科学、医疗检测、药物筛选、食品检测及环境监测等领域具有广泛的应用需求.SPR技术可与免疫传感器结合,利用抗原抗体的特异性反应可用于各种蛋白质抗原的检测.本文重点总结了SPR免疫传感器在食品及医疗领域蛋白质检测的应用,综述了近年来SPR免疫传感技术在这该领域的研究热点及进展.  相似文献   

4.
刘震 《色谱》2022,40(6):497-498
蛋白质糖基化与疾病的发生发展密切相关,临床上使用的大多数肿瘤标志物是糖基化蛋白质。在组学层次上进行位点特异性糖型的分析对发现新型疾病标志物、提高基于蛋白质糖基化的精准医学研究水平等具有重要作用。色谱-质谱联用技术在糖蛋白的分离分析研究中得到了广泛的应用。基于液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)的完整糖肽鉴定已成为研究蛋白质上位点特异性糖链修饰的主要手段,其主要优势在于分析过程中可以同时揭示蛋白位点与糖链修饰的信息,从而在组学层次实现规模化的蛋白糖基化分析。  相似文献   

5.
建立了一种检测白血病细胞表面抗原的细胞酶联免疫电化学分析新方法. 该方法兼有细胞酶联免疫分析抗原、抗体结合的特异性和插指电极阵列酶催化银沉积电化学分析的灵敏性. 在聚苯乙烯微孔板中包被白血病细胞, 先后加入鼠抗人抗体及碱性磷酸酶(ALP)标记的马抗鼠抗体, ALP催化抗坏血酸磷酸酯(AAP)水解成抗坏血酸(AA), AA使银离子还原成银单质并沉积到插指电极阵列表面, 导致插指电极阵列上相邻两个梳齿导通. 通过对电导率的测定, 可实现对细胞表面抗原的高灵敏分析. 此分析方法灵敏度高(可检测出50个左右的HL-60细胞)、特异性好, 且可用于大量样品的分析, 为白血病等肿瘤疾病的早期诊断和免疫分型提供了新技术. 此外, 该方法也可用于细胞表面分子基因工程抗体活性的检测.  相似文献   

6.
核酸适体生物传感器*   总被引:3,自引:0,他引:3  
郑静  何品刚  方禹之 《化学进展》2009,21(4):732-738
构建高速度、高特异性、高灵敏的蛋白质检测技术是目前蛋白质组学研究所面临的紧迫任务。传统蛋白质的检测主要利用抗体-抗原的特异相互作用。利用寡核苷酸间的严格的识别和亲和力而设计的人工合成寡核苷酸-适体(aptamer)的出现,使抗体抗原反应发生新的革命性变化。核酸适体对蛋白质的结合力和特异性可与抗原抗体间的作用力相媲美,且与抗体相比有许多优越性。因此利用核酸适体构建蛋白质的检测方法己引起许多科学工作者的关注。本文综述了核酸适体的发现(包括SELEX技术的原理),特点, 核酸适体生物传感器的原理、分类和应用,并对核酸适体生物传感器的发展进行了展望。  相似文献   

7.
王鼎乾  辛贵忠  石子琪  陈君  李萍 《色谱》2011,29(4):293-297
随着世界老年人口的急速增长,阿尔茨海默病发病人数也逐年增多,已成为继心脑血管疾病和恶性肿瘤之后威胁人类健康的“第三大杀手”。疾病的诊断和治疗同等重要,阿尔茨海默病诊断通常依靠典型的临床特征、神经影像技术以及检测疾病相关的生物标志物等。近些年来蛋白质组学和质谱技术迅速发展,可以利用这些技术寻找到与疾病相关的特异性的蛋白质分子作为早期诊断的生物标志物。本文就此进行了综述,主要包括基于蛋白质组学的诊断标志物的筛选和基于质谱检测的色谱技术在阿尔茨海默病诊断中的应用,引用文献34篇。  相似文献   

8.
以5,5'-二硫代双(琥珀酰亚氨基-2-硝基苯甲酸)(DSNB)分子作为偶联剂将蛋白质结合在金纳米粒子表面,既保持了蛋白质的生物活性,同时DSNB分子又具有较高的表面增强拉曼散射(SERS)活性,可作为蛋白质定量分析的探针分子.选用生物素与亲和素的特异性识别以及抗原抗体的免疫识别2个生物反应体系,将SERS纳米探针固定在蛋白质检测芯片上.以硅片为蛋白质检测载体,利用硅片在520 cm-1处的拉曼特征峰为内标,对人Ig G抗体进行定量分析.结果表明,该探针对人Ig G抗体检测的最低浓度可以达到5 pg/m L.  相似文献   

9.
钱金雄  杨秀娟  陈缵光 《色谱》2011,29(4):298-302
人类重大疾病特异性蛋白质的识别、鉴定等是目前生命科学亟待解决的问题。毛细管电泳技术用于蛋白质分析,具有装置简单、分析速度快、试剂和样品消耗少以及有多种分离模式和检测手段等特点。本文综述了毛细管电泳技术在人类重大疾病特异性蛋白质分析中的应用,包括肿瘤疾病、神经退行性疾病和输血性传染病等的特异性蛋白质检测。  相似文献   

10.
前列腺癌相关肿瘤标志物分析方法的研究进展   总被引:1,自引:0,他引:1  
马秋琳  冯楠  鞠熀先 《化学学报》2020,78(11):1213-1222
肿瘤标志物是在恶性肿瘤细胞中过表达的一类蛋白质,能反映肿瘤的发生、发展,并能监测肿瘤治疗的效果.因此,癌症患者血清中的肿瘤标志物的分析对于癌症状态的监测具有重要意义.常见的前列腺肿瘤标志物包括前列腺特异性抗原(PSA)、前列腺特异性膜抗原(PSMA)、α-甲酰基辅酶A消旋酶(AMACR, P504S)、前列腺酸性磷酸酶(PAP)和钙磷脂结合蛋白3(ANXA3)等.基于对前列腺肿瘤标志物的相关研究,本综述简要介绍了前列腺癌肿瘤标志物的组成、生物功能和生理意义,重点归纳了前列腺癌特异性抗原和前列腺酸性磷酸酶的检测技术,总结了当前前列腺癌肿瘤标志物检测技术的不足,并展望了前列腺癌肿瘤标志物检测在临床应用中的前景.  相似文献   

11.
Malondialdehyde (MDA) is a biomarker of lipid peroxidation that has been widely associated with food rancidity as well as many human diseases. Most current MDA detection methods involve MDA reaction with thiobarbituric acid (TBA), followed by UV-visible and/or fluorescence detection of high-performance liquid chromatography (HPLC)-separated TBA-MDA. Herein, we report the first proof-of-concept study of surface-enhanced Raman detection of a TBA-MDA adduct using silver nanoparticles as the SERS substrate and the 632.8 nm HeNe laser as a Raman excitation source. Current SERS detection limit of TBA-MDA is 0.45 nM, ~100 times higher than the 36 nM fluorescence sensitivity recently reported with the HPLC-purified TBA-MDA. Molecular specificity of the SERS technique was studied by comparing the SERS spectrum of TBA-MDA with those acquired with TBA adducts of other TBA-reactive compounds (TBARCs) that includes formaldehyde, acetaldehyde, butyraldehyde, trans-2-hexenal, and pyrimidine. Compared to TBA and TBA adducts with those TBARCs, the SERS activity of TBA-MDA adduct is significantly higher. The possibility of direct SERS detection of TBA-MDA in a reaction mixture (without HPLC separation) has also been investigated.  相似文献   

12.
M Lee  K Lee  KH Kim  KW Oh  J Choo 《Lab on a chip》2012,12(19):3720-3727
Here we report the development of a programmable and fully automatic gold array-embedded gradient microfluidic chip that integrates a gradient microfluidic device with gold-patterned microarray wells. This device provides a convenient and reproducible surface-enhanced Raman scattering (SERS)-based immunoassay platform for cancer biomarkers. We used hollow gold nanospheres (HGNs) as SERS agents because of their highly sensitive and reproducible characteristics. The utility of this platform was demonstrated by the quantitative immunoassay of alpha-fetoprotein (AFP) model protein marker. Our proposed SERS-based immunoassay platform has many advantages over other previously reported SERS immunoassay methods. The tedious manual dilution process of repetitive pipetting and inaccurate dilution is eliminated with this process because various concentrations of biomarker are automatically generated by microfluidic gradient generators with N cascade-mixing stages. The total assay time from serial dilution to SERS detection takes less than 60 min because all of the experimental conditions for the formation and detection of immunocomplexes can be automatically controlled inside the exquisitely designed microfluidic channel. Thus, this novel SERS-based microfluidic assay technique is expected to be a powerful clinical tool for fast and sensitive cancer marker detection.  相似文献   

13.
Immunoassay has been an essential tool in many areas, including clinical diagnostics. However, it suffers from drawbacks, such as poor availability of high specificity antibodies, limited stability of biological reagents, as well as damage to health and susceptibility of chemical labels to the sample environment. Here we present a new approach, a boronate‐affinity sandwich assay (BASA), for the specific and sensitive determination of trace glycoproteins in complex samples. BASA relies on the formation of sandwiches between boronate‐affinity molecularly imprinted polymers (MIPs), target glycoproteins, and boronate‐affinity surface‐enhanced Raman scattering (SERS) probes. The MIP ensures the specificity, while the SERS detection provides the sensitivity. BASA overcomes the drawbacks of traditional immunoassays and offers a great prospect for application.  相似文献   

14.
Circulating biomarkers have emerged as promising non-invasive, real-time surrogates for cancer diagnosis, prognostication and monitoring of therapeutic response. Emerging data, however, suggest that single markers are inadequate in describing complex pathologic transformations. Architecting assays capable of parallel measurements of multiple biomarkers can help achieve the desired clinical sensitivity and specificity while conserving patient specimen and reducing turn-around time. Here we describe a plasmon-enhanced Raman spectroscopic assay featuring nanostructured biomolecular probes and spectroscopic imaging for multiplexed detection of disseminated breast cancer markers cancer antigen (CA) 15-3, CA 27-29 and cancer embryonic antigen (CEA). In the developed SERS assay, both the assay chip and surface-enhanced Raman spectroscopy (SERS) tags are functionalized with monoclonal antibodies against CA15-3, CA27-29 and CEA, respectively. Sequential addition of biomarkers and functionalized SERS tags onto the functionalized assay chip enable the specific recognition of these biomarkers through the antibody-antigen interactions, leading to a sandwich spectro-immunoassay. In addition to offering extensive multiplexing capability, our method provides higher sensitivity than conventional immunoassays and demonstrates exquisite specificity owing to selective formation of conjugated complexes and fingerprint spectra of the Raman reporter. We envision that clinical translation of this assay may further enable asymptomatic surveillance of cancer survivors and speedy assessment of treatment benefit through a simple blood test.  相似文献   

15.
Cheng HW  Huan SY  Yu RQ 《The Analyst》2012,137(16):3601-3608
The development of ultrasensitive and rapid methods for the detection of bacterial spores is important for medical diagnostics of infectious diseases. While Surface-Enhanced Raman Spectroscopic (SERS) techniques have been increasingly demonstrated for achieving this goal, a key challenge is the development of sensitive and stable SERS substrates or probes. This Minireview highlights recent progress in exploring metal nanoparticle-based substrates, especially gold nanoparticle-based substrates, for the detection of biomarkers released from bacterial spores. One recent example involves assemblies of gold nanoparticles on a gold substrate for the highly sensitive detection of dipicolinic acid (DPA), a biomarker for bacterial spores such as Bacillus anthracis. This type of substrate exploits a strong SERS effect produced by the particle-particle and particle-substrate plasmonic coupling. It is capable of accurate speciation of the biomarker but also selective detection under various reactive or non-reactive conditions. In the case of detecting Bacillus subtilis spores, the limit of detection is quite comparable (0.1 ppb for DPA, and 1.5 × 10(9) spores per L (or 2.5 × 10(-14) M)) with those obtained using silver nanoparticle-based substrates. Implications of the recent findings for improving the gold nanoparticle-based SERS substrates with ultrahigh sensitivity for the detection of bacterial spores are also discussed.  相似文献   

16.
The detection and quantification of biomarkers have gained more attention in the medical discipline to evaluating disease progression to manage medical treatment. Biomarkers range from gases to biological macromolecules. Because of the nanomolar range levels of typical biomarkers in plasma, blood, urine, exhalation samples, and other biological fluids as well as complex matrix of biological media, adequate sample preparation methods should be used for quantification of biomarkers. Biomarkers are discussed here generally classified mainly into two subgroups which arisen from disease or exposure compounds. The analytical method is critical for the validity/reliability of a biomarker. Accuracy, precision, reproducibility, recovery, sensitivity, and specificity all have high influence to the consistency with the limit and reference values concerned. In this paper, developments in well-established liquid-phase microextraction techniques for the clinical analysis of biological samples will be reviewed and discussed. This article presents an overview of microextraction methods for biological samples, focusing especially on biomarkers.  相似文献   

17.
Glycan-based electrochemical biosensors are emerging as analytical tools for determining multiple molecular targets relevant to diagnosing infectious diseases and detecting cancer biomarkers. These biosensors allow for the detection of target analytes at ultra-low concentrations, which is mandatory for early disease diagnosis. Nanostructure-decorated platforms have been demonstrated to enhance the analytical performance of electrochemical biosensors. In addition, glycans anchored to electrode platforms as bioreceptors exhibit high specificity toward biomarker detection. Both attributes offer a synergy that allows ultrasensitive detection of molecular targets of clinical interest. In this context, we review recent advances in electrochemical glycobiosensors for detecting infectious diseases and cancer biomarkers focused on colorectal cancer. We also describe general aspects of structural glycobiology, definitions, and classification of electrochemical biosensors and discuss relevant works on electrochemical glycobiosensors in the last ten years. Finally, we summarize the advances in electrochemical glycobiosensors and comment on some challenges and limitations needed to advance toward real clinical applications of these devices.  相似文献   

18.
报道了空间稳定的表面增强拉曼散射(SERS)标记的金纳米棒探针在免疫检测方面的应用.该探针是将拉曼活性分子4-巯基苯甲酸和生物亲和性高分子α-巯基-ω-羧基聚乙二醇共吸附于金纳米棒表面而制得.其中,聚乙二醇高分子链为探针提供保护作用和空间稳定,使之可以耐受较苛性的条件;其端位的羧基与抗体等靶向实体结合,从而赋予探针检测识别功能.当探针检测待测抗原时(通过固体基底上的捕获抗体、待测抗原和探针上的抗体之间的特异性结合,形成经典“三明治”夹心结构),探针上4-巯基苯甲酸的SERS信号就能示踪出这种识别.该探针对单组分抗原的检出浓度能低至1×10-9mg·mL-1.  相似文献   

19.
A new concept of optical encoding approach, surface enhanced Raman scattering (SERS)-fluorescence joint spectral encoding method (SFJSE), was demonstrated by using organic-metal-quantum dot (QD) hybrid nanoparticles (OMQ NPs) with a nanolayered structure. This method has two distinct characteristics, which make it more feasible to achieve enormous codes in practice, compared with a sole fluorescence- or SERS-based encoding protocol. One of the two characteristics is to use the joint SERS and fluorescence spectra as the encoding elements instead of an individual optical signal, resulting in a broadened optical spectrum range for efficient encoding. The other is to assemble SERS reporters and fluorescent agents onto different layers of OMQ NPs, leading to an easier fabrication protocol when a large number of agents need to be involved into encoding carriers. By conjugating different antibodies to OMQ NPs with varied codes, the potential application of such an encoding system in high-throughput detection has been investigated by multiplex sandwich immunoassays. The high specificity and sensitivity of the assays suggest that the SFJSE method could be developed as a powerful encoding tool for high-throughput bioanalysis with the use of OMQ NPs.  相似文献   

20.
Guzman NA  Phillips TM 《Electrophoresis》2011,32(13):1565-1578
Many diseases caused by inflammatory processes can progress to a chronic state causing deterioration in the quality of life and a poor prognosis for long-term survival. To address inflammatory diseases effectively, early detection and novel therapeutics are required. However, this can be challenging, in part because of the lack of early predictive biomarkers and the limited availability of adequate technologies capable of the identification/characterization of key predictive biomarkers present in biological materials, especially those found at picomolar concentrations and below. This review highlights the need for state-of-the art methodologies, with high-sensitivity and high-throughput capabilities, for determination of multiple biomarkers. Although many new biomarkers have been discovered recently, existing technology has failed to successfully bring this advancement to the patient's bedside. We present an overview of the various advances available today to extend the discovery of predictive biomarkers of inflammatory diseases; in particular, we review the technology of immunoaffinity capillary electrophoresis (IACE), which combines the use of antibodies as highly selective capture agents with the high resolving power of capillary electrophoresis. This two-dimensional hybrid technology permits the quantification and characterization of several protein biomarkers simultaneously, including subtle structural changes such as variants, isoforms, peptide fragments, and post-translational modifications. Furthermore, the results are rapid, sensitive, can be performed at a relatively low cost, without the introduction of false positive or false negative data. The IACE instrumentation can have relevance to medical, pharmaceutical, environmental, military, cultural heritage (authenticity of art work), forensic science, industrial and research fields, and in particular as a point-of-care biomarker analyzer in translational medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号