首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高海藻酸钠(SA)纤维的断裂强度和断裂伸长率,以丙烯酸(AA)为化学交联组分,SA为离子交联组分,聚乙烯醇(PVA)为微晶交联组分,采用湿法纺丝和冻融循环方法制备含有PVA微晶交联点和海藻酸钠/聚丙烯酸(SA/PAA)双网络结构的海藻酸钠/聚丙烯酸/聚乙烯醇(SA/PAA/PVA)复合纤维。通过流变性能、力学性能、红外光谱、X射线衍射仪(XRD)和扫描电子显微镜(SEM)测试研究了交联剂N,N-亚甲基双丙烯酰胺(MBA)含量和PVA微晶交联对SA/PAA/PVA纺丝原液和复合纤维的结构与性能的影响。结果表明,当MBA质量分数为0. 5%时,纺丝原液的损耗模量(G″)最小,可纺性最好,复合纤维的断裂强度达到2. 83 cN/dtex,断裂伸长率达到9. 38%,比再生SA纤维分别提高了15. 98%和38. 96%; PVA冷冻之后形成微晶交联点并且PAA和PVA已经复合到体系中; PAA和PVA的加入提高了复合纤维的结晶度;复合纤维的表面形貌趋于光滑和规整,纤维断面更加致密。  相似文献   

2.
随着空气污染的日益严重,高效低阻空气过滤材料的开发成为研究热点.为了提高聚丙烯(PP)熔喷过滤材料的过滤性能,本文以PP熔喷过滤材料为基材,聚偏氟乙烯-六氟丙烯(PVDF-HFP)为皮层,聚间苯二甲酰间苯二胺(PMIA)为芯层,采用同轴静电纺丝技术制备了具有高效低阻特性的PP/PMIA@PVDF-HFP纳米纤维复合滤材,研究了纺丝工艺和热处理等对滤材形貌、孔径、透气性和过滤性能的影响.在高温作用下,耐高温性能优异的芯层组分PMIA可以保持原有形态,而低熔点的皮层组分PVDF-HFP将会熔融,进而将纳米纤维粘结在一起.因此,通过热处理的方式可以实现纳米纤维膜孔结构的调控,并提高复合纤维滤材对空气中微小颗粒物的拦截能力.结果表明,当静电纺丝时间为60 min时,热处理后PP/PMIA@PVDF-HFP纳米纤维复合滤材孔隙率稳定在约75%,平均孔径为2.58μm,透气率为132.74 mm/s;对粒径<2.5μm的固体颗粒物(PM2.5)的过滤效率可达97.67%,过滤阻力仅为45.1 Pa,综合性能较优,且在不同风速、不同颗粒物浓度和长时间使用等条件下仍能保持优异的过滤性能.  相似文献   

3.
《高分子学报》2021,52(10):1353-1360
多组分是实现纤维性能提升和调控的有效手段.利用传统方法制备的多组分纤维,不同高分子之间很难达到分子层面相容.高分子复合物是不同高分子高度相容的聚集组装体系.本工作研究聚氧化乙烯(PEO)、聚乙烯醇(PVA)和聚丙烯酸(PAA) 3种组分制备复合物纤维.利用红外光谱、X射线衍射、示差扫描量热、扫描电子显微镜和力学拉伸等方法分别表征氢键复合、纤维的聚集态结构和力学性质.研究结果表明,PEO/PVA/PAA纤维不同组分高度相容,通过改变纤维中组分的含量,可以实现对多组分复合物纤维的性能调控.纤维中柔性PEO组分含量增加,可以实现由塑性到弹性的转变,并且纤维在湿度场下表现出形状记忆与可修复行为.  相似文献   

4.
采用静电纺丝技术制备了阿司匹林(AS)/玉米淀粉(ST)/聚乙烯醇(PVA)复合纳米纤维膜.利用扫描电镜观察到纳米纤维成连续三维立体网状结构;红外光谱分析表明,AS,PVA和ST三者之间能够通过氢键相互作用;X-射线衍射分析结果表明,药物基本被包裹于纤维之中,但AS的含量对纤维表面形态有一定影响;体外溶出实验结果表明,通过调整AS的载入量及压片压力,可以调控药物的缓释时间;同时,改变PVA与ST比例,可以调控药物的释放速率.  相似文献   

5.
聚丙烯酸/聚丙烯酰胺水溶液复合特性的研究   总被引:1,自引:0,他引:1  
通过酸度、电导率、粘度、接触角的测定,研究了聚丙烯酸 (PAA) /聚丙烯酰胺 (PAM) 水溶液复合物及复合物膜的结构和性能。结果表明,酸度、温度、浓度和复合比影响PAA/PAM的复合水溶液中大分子链的构象和流体力学体积,适度的氢键作用可以形成均相的复合溶液。经过热处理和未经热处理的聚合物膜表现出了不同的亲水性能。  相似文献   

6.
余佳鸿  王晗  李响 《广州化学》2019,44(2):48-53
以聚偏氟乙烯(PVDF)为原材料,以PET熔喷非织造布为接收基材,通过静电纺丝技术制备了微量串珠纤维复合滤料,利用扫描电子显微镜(SEM)观察纺丝液浓度、纺丝电压、纺丝距离对纤维形貌的影响,并研究了静电纺丝时间对复合滤料过滤性能的影响。结果表明,工艺参数最优组合为:纺丝液质量分数20%,纺丝电压38 kV和纺丝距离25 cm,并且各纺丝时间的复合滤料样品都表现出极高的过滤效率和较低的过滤阻力,综合考虑,优选纺丝时间为5min时,复合滤料可达到最佳的过滤性能。  相似文献   

7.
目前,将天然高分子蛋白和聚合物共混利用静电纺丝法制作各种组织工程支架材料倍受关注。基于这种研究背景,在本文中利用静电纺丝技术,制备了丝素(SF)/胶原(COL)/聚左旋乳酸(PLLA)和SF/COL/聚左旋乳酸-己内酯(PLCL)两种共混复合纤维膜,通过扫描电镜(SEM)对纤维形态结构分析,发现复合纤维形貌良好,直径较为均一。同时改变纺丝液中高分子蛋白的比例,复合纤维的直径也随之减小。此外,对复合纤维进行了力学性能测试,发现随着聚合物含量的增加,复合纤维膜的力学性能得以改善,SF/COL/PLCL组复合纤维的拉伸性能明显优于SF/COL/PLLA组。  相似文献   

8.
海藻酸钠-羧甲基纤维素钠共混纤维的制备及其吸湿性能   总被引:1,自引:0,他引:1  
以海藻酸钠(ALG)和羧甲基纤维素钠(CMC)两种天然高分子材料为纺丝原料,氯化钙水溶液为凝固浴,制得了吸湿性能优异、力学性能良好的海藻酸钠-羧甲基纤维素钠共混纤维。采用离心脱水法,系统研究了纺丝工艺条件、吸收环境对共混纤维吸湿性的影响,并在此基础上获得了海藻酸钠-羧甲基纤维素钠共混纤维的吸湿动力学模型。  相似文献   

9.
利用静电纺丝技术制备了明胶与聚乳酸的复合纤维膜, 研究了组分配比对复合膜的表面性能、孔隙结构和力学性能的影响, 并以复合膜为组织工程支架进行兔角膜上皮细胞的体外培养. 采用扫描电子显微镜、免疫荧光染色和噻唑蓝四氮唑溴化物(MTT)比色法综合评价了细胞在支架表面的黏附与增殖能力. 结果表明, 纺丝溶液的组分对纤维的直径分布和表面亲水性有显著影响, 不同组分配比的复合纤维膜均具有高孔隙率的通孔结构; 以明胶为基材可维持复合膜的细胞黏附性; 与聚乳酸复合可以明显提高复合膜的力学性能.  相似文献   

10.
海藻酸锌纤维热降解法制备氧化锌纳米结构   总被引:1,自引:0,他引:1  
采用天然高分子海藻酸钠为原料, 以氯化锌水溶液为凝固浴, 通过湿法纺丝技术成功制备了海藻酸锌(Alg-Zn)纤维.通过在空气中不同温度下对所得海藻酸锌纤维进行热处理, 得到了多种ZnO纳米结构. 利用热失重分析(TG)、X射线衍射(XRD)、电子能量损失谱(EELS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等手段对产物的组成、形貌和微观结构进行了详细表征. 结果表明, 焙烧温度和时间对所得ZnO纳米结构的尺寸和形貌具有重要影响; 800 ℃下热处理24 h以上可以得到直径约为120 nm的ZnO纳米棒. 通过仔细考察不同热处理时间得到的ZnO纳米结构, 提出了在焙烧条件下ZnO纳米棒的生长机理.  相似文献   

11.
利用静电纺丝技术制备了一种具有抗菌性能的氧化锌(ZnO)/聚乳酸(PLA)/聚己内酯(PCL)载药微纳米纤维膜,并通过扫描电子显微镜(SEM)、X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)分别对复合膜的表面形态、元素组成和化学结构进行表征。通过抗菌实验评价了复合膜的抗菌性能,用紫外分光光度计测试复合膜在体外的药物释放行为。结果显示,以物理共混的方式将ZnO和氢溴酸高乌甲素(LAH)成功载入复合微纳米纤维;与PLA/PCL复合微纳米纤维膜相比,ZnO/PLA/PCL复合微纳米纤维膜表现出更好的抗菌效率。当ZnO含量为10%(wt)时,复合微纳米纤维膜具有最佳的抗菌性能;药物释放性能结果表明,ZnO/PLA/PCL复合微纳米纤维膜具有良好的药物缓释性能。  相似文献   

12.
纤维素基储能调温超细纤维的制备   总被引:3,自引:0,他引:3  
使用静电纺丝法制备了以醋酸纤维素(CA)为载体基质,聚乙二醇(PEG)为相变材料的新型PEG/CA储能调温超细复合纤维,研究了纺丝溶液中不同PEG含量和分子量对复合纤维的形态和热学性能的影响。结果发现复合纤维的形态一般呈表面光滑的圆柱状,其平均直径随着PEG含量和分子量的增加而增大,PEG随机分布在复合纤维中的内部和表面。热学分析发现当改变纤维中PEG的含量时,复合纤维的相变温度变化不大,而相变焓则与之成正比变化;当改变纤维中PEG分子量时,复合纤维的相变温度和相变焓均随之而改变。通过多次热循环测试发现复合纤维的热学性能均无太大变化,表明所得复合纤维具有良好的耐热性能和稳定性能。通过模拟测试发现,所制得的PEG/CA复合纤维具有良好的蓄热调温特性。因此,PEG/CA储能调温超细复合纤维具有很好的应用前景。  相似文献   

13.
以聚丙烯腈(PAN)为载体基质、 以铕-聚乙二醇(Eu-PEG)和铽-聚乙二醇(Tb-PEG)为相变荧光材料, 加入掺杂的导电聚苯胺(PANI), 采用静电纺丝技术制得Tb-PEG+Eu-PEG/PANI/PAN复合纤维. 采用扫描电子显微镜(SEM)、 荧光光谱(FL) 仪、 差示扫描量热(DSC)仪及宽频介电松驰谱(BDS)仪等方法对相变荧光导电复合纤维的性能进行分析. 研究结果表明, 复合纤维具备良好的荧光、 相变及导电性能. 在294 nm紫外光激发下, 通过调节Tb-PEG和Eu-PEG的质量比可调节复合纤维的发光强度和颜色, 同时复合纤维的相变温度在5467 ℃之间. 复合纤维的电导率达到10-6 S/cm, 随着PANI含量的增加, 电导率和介电常数增加. 通过调节Tb-PEG, Eu-PEG和PANI的比例及PEG的分子量, 可以实现复合纤维荧光、 导电及相变性能的可控调整.  相似文献   

14.
采用静电纺丝技术将导电聚苯胺(PANI)和铕/铽稀土配合物掺杂到高分子基质聚乙烯吡咯烷酮(PVP)中,制备出荧光导电复合纳米纤维。用扫描电镜(SEM)、荧光光谱仪(FL)、宽频介电松驰谱仪对荧光导电复合纳米纤维的性能进行分析,结果显示,在270nm紫外光激发下,铕系列与铽系列复合纳米纤维分别发出红光和绿光。同时,复合纳米纤维的电导率可以达到1.18×10~(-6) S/cm,两种复合纳米纤维同时具有优异的荧光性能及良好的导电功能。  相似文献   

15.
研究了聚丙烯酸钠(PAAS)对镁铝型层状复合金属氢氧化物(MgAl-LDH)的胶体水分散体系稳定性的影响. 利用总有机碳(TOC)分析技术测定了PAAS在LDH颗粒上的吸附量, 并利用ζ电位表征了LDH颗粒的电性质. 实验结果表明, 在质量分数为1%的LDH水分散体系中加入0.006~2.400 mmol/L PAAS, 随着PAAS浓度的增加, LDH-PAAS混合体系出现了絮凝-分散-再絮凝变化. 同时, 随着PAAS浓度的增加, PAAS在LDH颗粒上的吸附导致颗粒ζ电位由正减至0, 并进一步负向增加, 颗粒间静电斥力先减小后增加, 因此体系先絮凝再分散. 随着LDH颗粒负电性的进一步增强, 未吸附的PAAS引发颗粒间产生的空缺引力成为体系再次絮凝的主要原因. 对吸附PAAS的LDH颗粒的红外光谱分析表明, PAAS主要通过-COO-与LDH的相互作用而吸附在颗粒上.  相似文献   

16.
利用低压近场静电纺丝技术制备了ZnO/PVDF(聚二偏氟乙烯)微米纤维平行阵列, 通过光学显微镜、扫描电子显微镜(SEM)和X射线能量色散光谱(EDS)对ZnO/PVDF微米纤维进行了表征. 该复合纤维的平均直径约为40 μm. EDS分析测试证明ZnO纳米颗粒已经掺杂进入了平行微米纤维中. 压电性能和电学性能测试结果表明, ZnO/PVDF微米纤维阵列的压电性能增强. 研究结果表明, 近场电纺丝ZnO/PVDF复合微米纤维阵列在压电型压力传感器和纳米发电机领域具有潜在的应用价值.  相似文献   

17.
以铝粉、工业盐酸和醋酸钇为主要原料,水为溶剂,通过溶胶-凝胶法制备了钇铝石榴石(YAG)纤维前驱体纺丝原液。采用XRD表征了纺丝液热处理后的物相组成,采用27Al核磁共振、FTIR和旋转流变仪分别研究了纺丝液的结构、红外吸收特性和流变学行为。结果表明,在900 ℃下热处理可以得到单一的钇铝石榴石晶相。通过27Al核磁共振和红外吸收光谱的变化分析了YAG溶胶的形成机理,认为YAG溶胶是由体系内活性羟基的缩聚反应而生成的线性结构的胶体。YAG纺丝液的纺丝性依赖于其流变性和粘度,具有纺丝性能的胶体为剪切变稀的假塑性流体,粘度在2~4 Pa·s。研究了纺丝液的非牛顿指数与含水量的关系,纺丝性能最好的胶体的非牛顿指数为0.78。  相似文献   

18.
为简单有效地制备高活性表面增强拉曼光谱(Surface-enhanced Raman Spectroscopy,SERS)基底。本文采用静电纺丝聚乙烯醇(PVA)/聚丙烯酸(PAA)纳米纤维为支撑材料,通过直接浸泡的方法,利用金纳米棒与电纺纤维之间的静电力,使纳米棒在纤维表面自组装,得到了性能优异的SERS基底。通过透射电子显微镜、扫描电子显微镜对金纳米棒以及不同状态下的电纺纤维的形貌进行表征,结果表明,金纳米棒均匀且密集地负载在纤维表面。通过设置不同的浸泡时间确定了金纳米棒组装平衡的时间为12 h,并通过调控纺丝时间和金纳米棒的浓度发现随着纺丝时间和金纳米棒浓度的增加,复合纤维膜SERS增强效果随之提升。该复合纤维膜具有优异的SERS均匀性,并且能够检测到浓度低至10~(-10)mol/L的4-氨基苯硫酚的存在。  相似文献   

19.
功能化和智能化是纤维发展的趋势.单一组分纤维难以满足日益发展的需求,而多组分纤维能够集中不同组分的特点,实现性能的集成与优化.通过非共价相互作用,高分子聚集而形成多组分均相体系,称为高分子复合物.利用高分子复合物的形成过程使纤维成型;或者直接利用高分子复合物进行纺丝而得到的纤维称为高分子复合物纤维.高分子复合物纤维,各组分可以达到分子层面上的相容性,给我们提供了一个功能纤维和智能纤维设计开发的平台.本文详细阐述了各类高分子复合物纤维的研究现状,并展望高分子复合物纤维的未来发展.  相似文献   

20.
经四氯化锡处理的聚丙烯腈纤维,在进一步热处理过程中可以成为一种高分子半导纤维。它具有如下四个特点:1.纤维电阻率在10~3—10~(12)欧姆·厘米范围内可以控制热处理温度而随意调节。2.水解处理干燥后纤维的电阻值基本不变。3.有足够的机械强度可以进行多种形式的加工。4.纤维的电阻-温度、电导率-频率依赖关系,直流伏-安特性的试验结果表明它具有有机半导体特性,是一种兼有良好电性能和力学性能的高分子半导纤维。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号