首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文在金纳米粒子修饰的玻碳电极表面,通过表面分子自组装和分子印迹电聚合的方法,成功制备了铜离子印迹电化学传感器,并利用该印迹传感器对自来水样中的铜离子进行了电化学检测。实验表明,制备的印迹传感器可以用于自来水样中铜离子的检测,并且具有较高的灵敏度和选择性。在5×10~(-10)~1×10~(-6)mol·L~(-1)浓度范围内峰电流与Cu~(2+)浓度的对数表现出了良好的线性关系,线性回归方程为I_p=-10.24Lg C-199.9(I_p:μA,C:mol·L~(-1)),相关系数为:0.9923,最低检测限为1.67×10~(-10)mol·L~(-1)(S/N=3)。  相似文献   

2.
成功制备了由L-半胱氨酸和CdTe量子点作为修饰材料的电化学传感器并用于水体中Pb~(2+)的检测。巯基丙酸修饰的CdTe量子点通过水相合成,表面含有大量羧基,与L-半胱氨酸表面的氨基形成酰胺键,修饰于金电极表面。通过荧光分光光度计、透射电子显微镜、红外光谱、X射线衍射对L-Cys/CdTe QDs复合材料进行表征。采用循环伏安法(CV)研究了L-Cys/CdTe QDs修饰成分在金电极上的电化学性能及CdTe量子点的最佳自组装时间。采用差分脉冲溶出伏安法(DPSV)研究了铅离子在修饰电极上的电化学行为。在优化实验条件下,Pb~(2+)浓度在1.0×10~(-6)~1.0×10~(-2) mol/L范围内与其峰电流呈良好的线性关系,相关系数(r2)为0.993 8,检出限(3σ,n=5)为4.0×10~(-7) mol/L。该传感器具有良好的重现性和稳定性,有望用于实际水样中铅离子的检测。  相似文献   

3.
实验采用改进的Hummers法合成氧化石墨烯并将其修饰在碳糊电极(CPE)的表面制备了氧化石墨烯修饰碳糊电极(GO/CPE),以该修饰电极为工作电极,采用方波溶出伏安法对锌离子进行测定。结果表明:在十二烷基苯磺酸钠的增敏作用下,在0.1mol·L~(-1)KCl溶液中,该修饰电极对锌的氧化溶出有良好的催化作用,溶出峰电流与Zn~(2+)的浓度在4.0×10-8mol·L~(-1)~2.0×10-7mol·L~(-1)呈良好的线性关系,检出限为1.8×10~(-10)mol·L~(-1).该修饰电极用于实际样品中锌的含量分析,结果令人满意。  相似文献   

4.
通过电沉积技术制备了石墨烯修饰电极,用于同位镀铋膜阳极溶出伏安法测定铅和镉离子的含量。石墨烯具有较大的比表面积和良好的导电性,石墨烯修饰电极的应用提高了电化学检测的灵敏度。在最优化条件下,溶出峰电流与Pb~(2+)和Cd~(2+)的浓度在1×10~(-8)-1×10~(-5)mol·L~(-1)范围内呈现良好的线性关系,检测限分别为1×10~(-9)mol·L~(-1)(Pb~(2+))和3×10~(-9)mol·L~(-1)(Cd~(2+))。该电极还应用于用于中成药中Pb~(2+)和Cd~(2+)的含量测定,结果令人满意,表明本方法操作简单,灵敏度高,重现性好,具有较好的实际应用前景。  相似文献   

5.
本文通过绿色制备方法合成碳球(CNS),并将金胶纳米粒子(AuNPs)自组装到碳球的表面,此CNS/AuNPs纳米复合材料体现了较强的导电性、较大的比表面积和优良的化学稳定性。构建了CNS/AuNPs/Nafion电化学传感器,并将其用于Pb~(2+)和Cd~(2+)的检测,大大提高了电化学检测的灵敏度。Pb~(2+)在浓度为3.0×10~(-8)~5.0×10~(-6)mol·L~(-1)范围内,溶出峰电流与离子浓度呈现良好的线性关系,检测限为1.1×10~(-8 )mol·L~(-1)。Cd~(2+)在浓度为8.0×10~(-8 )~8.0×10~(-6 )mol·L~(-1)范围内,峰电流与离子浓度呈现良好的线性关系,检测限为2.7×10~(-8 )mol·L~(-1)。该电化学传感器还应用于实际生活水样中Pb~(2+)和Cd~(2+)的含量测定,取得满意结果。本方法绿色环保,灵敏度高,重现性好,在实际生活样品中重金属离子的检测方面具有较好的应用前景。  相似文献   

6.
采用涂覆法制备多壁碳纳米管(MWCNTs)-离子液体([BMIM]PF6)-木质素磺酸钠(LSS)修饰玻碳电极(GCE),然后在其表面同位镀铋膜,研究Pb(Ⅱ)和Cd(Ⅱ)在该修饰电极上的阳极溶出伏安行为。实验表明,Pb、Cd在该修饰电极上分别于-0.44V、-0.73V产生灵敏的溶出峰,Pb(Ⅱ)和Cd(Ⅱ)分别在3.0×10-8~1.0×10-6mol·L-1和2.0×10-8~8.0×10-7mol·L-1浓度范围内与其溶出峰电流呈良好的线性关系,检出限分别为4.1×10-9mol·L-1、6.9×10-9mol·L-1。该修饰电极制备简单,重现性好,用于河水中铅和镉的测定,效果良好。  相似文献   

7.
通过滴涂及电聚合方式分别将多壁碳纳米管和赖氨酸共修饰于玻碳电极上,制备出聚赖氨酸/多壁碳纳米管修饰电极,并建立了阳极溶出伏安法测定铅离子的新方法。采用线性扫描伏安法及循环伏安法研究了铅离子在修饰电极上的电化学行为,并考察了测定底液、底液p H值、富集电位、富集时间等条件的影响。在最佳实验条件下,铅离子的溶出峰电流与其浓度在2.0×10-7~8.0×10-5mol·L-1范围内呈良好的线性关系,检出限为1.0×10-7mol·L-1。利用所制备的修饰电极对大米样品进行加标回收实验,回收率为98%~102%。该方法具有良好的灵敏度和稳定性,已成功应用于大米样品中铅离子的测定。  相似文献   

8.
以铜离子为模板,多巴胺为功能单体,采用电聚合法在石墨烯修饰碳电极表面成功制备对铜离子有高选择性和灵敏性的印迹电化学传感器。采用差分脉冲伏安法和循环伏安法对该印迹传感器的电化学行为进行详细研究。在优化检测条件下,该印迹电化学传感器的响应电流与铜离子浓度的负对数在5.0×10~(-6)~5.0×10~(-11)mol/L浓度范围内呈良好的线性关系,最低检测限为1.0×10~(-11)mol/L。该印迹电化学传感器成功用于实际水样中的微量铜离子分析。  相似文献   

9.
以多壁碳纳米管(MWCNTs)修饰玻碳电极为工作电极,采用阳极溶出线性扫描法研究了铜离子的电化学测定方法。探讨了MWCNTs修饰层数、富集电位、富集时间、溶液pH、支持电解质对峰电流的影响。实验表明,铜离子浓度在1.0×10-8~1.0×10-5mol·L-1范围内与峰电流呈良好的线性关系,检测限为2.0×10-9mol·L-1,且该电极具有良好的稳定性和抗干扰能力。  相似文献   

10.
用电化学沉积法将三聚氰胺修饰在玻碳电极上,应用此三聚氰胺修饰玻碳电极测定银时,试液在pH 4.6的乙酸-乙酸钠缓冲溶液中,在—0.45V处还原60 s,然后在0~+0.6V范围内扫描,使银离子从修饰电极上溶出,实现了水样中银离子的溶出伏安法测定,在+0.27V处可得银离子的氧化峰电位,银的浓度在6.0×10~(-9)~5.0×10~(-7)mol·L~(-1)范围内与其峰电流呈线性关系,检出限(3S/N)为1.0×10~(-9)mol·L~(-1)。方法用于实际水样中痕量银的测定,加标回收率在90.0%~96.0%之间。  相似文献   

11.
通过改进的Hummers法和溶剂热法分别制备了石墨烯和硫化铜纳米花。采用滴涂法进一步依次将石墨烯和硫化铜纳米花修饰于玻碳电极,制备了硫化铜纳米花/石墨烯修饰玻碳电极(Nanoflower CuS/GR/GCE)。利用循环伏安法和差分脉冲伏安法等研究了长春地辛在该修饰电极的电化学行为。结果表明:长春地辛的浓度在1.0×10~(-8)~1.0×10~(-7) mol·L~(-1),1.0×10~(-7)~1.1×10~(-5) mol·L~(-1)及1.1×10~(-5)~1.0×10-4 mol·L~(-1)内与其对应的峰电流的减小量呈线性关系,检出限(3S/N)为4.9×10~(-9 )mol·L~(-1)。对1.0×10~(-6) mol·L~(-1)长春地辛标准溶液连续测定5次,测定值的相对标准偏差为1.2%。方法用于长春地辛药品样品的分析,加标回收率在97.1%~103%之间。  相似文献   

12.
制备了一种纳米氧化铁修饰玻碳电极,并研究了镉离子在该修饰电极上的溶出伏安行为。结果表明,纳米氧化铁颗粒能有效促进镉离子的溶出伏安响应。在pH 6.0的磷酸缓冲溶液中,镉离子能有效吸附在纳米氧化铁表面并在-1.0 V时被还原。被还原的镉在正向扫描过程中可以重新氧化,并在-0.85 V处出现一明显的溶出伏安氧化峰。该峰电流随镉离子浓度的增大而增大,可用于对镉离子的检测。在最佳检测条件(pH 6.0,富集时间350 s,富集电位-1.0 V)下,镉离子的响应电流与其浓度在6.0×10-10~1.0×10-8mol/L以及1.0×10-8~1.0×10-5 mol/L范围内呈良好线性,检出限(S/N=3)为1.0×10-10 mol/L。干扰实验结果表明,一些常见的阳离子以及阴离子对镉离子的检测无明显干扰。将该方法用于实际样品的检测,回收率良好。  相似文献   

13.
采用石墨烯作为电极增敏材料,制备三唑磷(TAP)分子印迹电化学传感器。采用自由基聚合法,在石墨烯修饰电极(GR/GCE)上合成分子印迹聚合物膜(MIP)。利用微分脉冲伏安法、电化学阻抗谱对不同修饰电极进行电化学表征,利用微分脉冲伏安法考察了MIP和非分子印迹聚合物膜(NIP)传感器的电化学性能。在最优实验条件下,TAP浓度在1.0×10~(-7)~2.0×10~(-5)mol·L~(-1)内和MIP膜传感器峰电流呈线性关系,检出限为4.3×10~(-8)mol·L~(-1)(S/N=3)。建立MIP膜传感器的动力学吸附模型,测得结合速率常数k为9.0580 s。  相似文献   

14.
制备了钯(Pd)/壳聚糖-还原氧化石墨烯(CS-RGO)修饰电极。采用循环伏安法研究了利发霉素在该修饰电极上的电化学行为,并利用示差脉冲伏安法对其进行测定。在0.1 mol·L~(-1)的磷酸盐缓冲溶液(PBS,pH=7.0)中,利发霉素的氧化峰电流大小与其浓度在1.0×10~(-7)~1.0×10~(-3) mol·L~(-1)浓度范围内成良好的一次线性关系,检出限为7.4×10~(-9) mol·L~(-1)(S/N=3)。此外,该修饰电极具有很好的稳定性和抗干扰能力。  相似文献   

15.
取1g·L~(-1)多壁碳纳米管悬浮液2μL,滴涂在自制的碳糊电极表面,待溶剂挥发后即得多壁碳纳米管修饰的碳糊电极(MWCT-CPE)。再在其表面滴涂1g·L~(-1)十二烷基苯磺酸钠溶液2μL,即制成MWCT-SDBS-CPE修饰电极。结果表明:碳糊电极经多壁碳纳米管和十二烷基苯磺酸钠修饰后,降低了电荷转移电阻,有利于电子传递。以0.005mol·L~(-1)硝酸钠为支持电解质,在pH 5.0的乙酸-乙酸钠缓冲溶液中进行微分脉冲伏安法(DPV)测定时,该修饰碳糊电极对磺胺甲噁唑(SMZ)具有良好的电化学响应。SMZ的线性范围为2.0×10~(-9)~1.0×10~(-7) mol·L~(-1)和1.0×10~(-7)~1.0×10~(-5) mol·L~(-1),方法的检出限为1.0×10~(-9) mol·L~(-1)。对6.0×10~(-6) mol·L~(-1)SMZ标准溶液连续测定5次,测定值的相对标准偏差为4.9%。  相似文献   

16.
在0.07mol·L~(-1)六次甲基四胺(pH 7.5)介质中,胱氨酸与镉离子的配合物可在-0.69V(vs.SCE)产生灵敏的还原吸附波。其导数波高与胱氨酸浓度在2.5×10~(-7)~7.5×10~(-6)mol·L~(-1)范围内呈线性关系,检出限为1.0×10~(-7)mol·L~(-1)。用极谱法和循环伏安法研究了该波的性质,并建立了胱氨酸的测定方法,用于测定粮食和食品中的胱氨酸,取得满意的结果。  相似文献   

17.
研制了以咖啡因-磷钼酸缔合物为电活性物质的离子选择性电极。试验表明:该离子选择性电极对咖啡因具有良好的选择性和电位响应特性。在pH 2.54磷酸盐缓冲溶液中,电极电位呈现能斯特响应,线性范围为5.0×10~(-6)~1.0×10~(-2)mol·L~(-1),斜率为51.4mV·pc~(-1)。将该电极用于测定可乐饮料中咖啡因的含量,测得方法的回收率在98.4%~102.4%之间。  相似文献   

18.
制备了活化玻碳电极,并采用循环伏安法研究了安乃近在该电极上的电化学行为。结果表明,该电极过程是一受吸附控制的不可逆过程。用线性扫描伏安法优化了实验参数,测定了浓度与峰电流Ipa的线性关系,在1.0×10~(-6)~5.0×10~(-5)mol·L~(-1)和5.0×10~(-5)~1.0×10~(-3)mol·L~(-1)范围内,有线性方程Ipa(μA)=0.43751+0.15494c(μmol·L~(-1));Ipa(μA)=7.03296+0.02556c(μmol·L~(-1)),检出限可达5.00×10~(-7)mol·L~(-1),回收率为94.0%~103.25%。该方法可用于药物中安乃近含量的测定。  相似文献   

19.
本文用简单、快速的电化学预处理的方法制备了用于同时测定左旋多巴(LD)和叶酸(FA)的预阳极化碳糊电极(PACPE),利用循环伏安法研究了LD和FA在PACPE上的电化学行为。在pH=6.00.的磷酸盐缓冲溶液中,LD和FA的浓度分别在5.0×10~(-7)~1.50×10~(-4)mol·L~(-1)和1.0×10~(-6)~1.50×10~(-4)mol·L~(-1)的范围内与它们的氧化峰电流具有良好线性关系。LD和FA的检出限(3σ/k)分别为为6.7×10~(-8)mol·L~(-1)和8.3×10~(-8)mol·L~(-1)。该电极具有良好的重现性和稳定性。该方法可用于药物制剂中LD和FA的测定,回收率分别为98.4~103.2%和97.2~103.6%。  相似文献   

20.
制备了一种以盐酸地尔硫卓与碘汞酸盐形成的缔合物为电活性物质的聚氯乙烯膜盐酸地尔硫卓选择电极,并对其性能做了测定,结果显示该电极对盐酸地尔硫卓有较好的能斯特响应。盐酸地尔硫卓的线性范围为4.5×10~(-2)~1.0×10~(-4)mol·L~(-1),检出限为3.55×10~(-5)mol·L~(-1)。该电极用于盐酸地尔硫卓片剂的分析,结果与药典法结果相符。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号