首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With a high-resolution 1H-NMR the features of solution-SBRs chain structures have been analyzed and made quantitative calculations of the chemical composites, inparticular, the contents of butadiene isomers have been made. It is reveal that the Bayer solution-SBR, whose performance is highly recognized inthe tire industry, has a high content of cis-1,4 butadiene isomers, allow content of trans-1,4 butadiene isomers, and a medium contents of 1,2add butadiene isomers and styrene units, as well as that the butadiene isomers display orderly characteristics in the sequence. The above structural features determine that Bayer solution-SBR can play good role in the balance of the low heat building up, antiwetskip and antiwear properties of green tire.  相似文献   

2.
以正丁基锂(n-BuLi)为引发剂,环己烷/环戊烷为溶剂,合成了溶聚丁苯橡胶(SSBR),并对反应过程中的现象、橡胶的结构与性能进行了研究。结果表明,用不同的结构调节剂并改变配比及用量,对共聚物中1,2-结构含量,二者相差不大,但是嵌段苯乙烯含量环戊烷体系明显低于环己烷体系。不同温度、不同调节剂配比下,两种体系下分子量相差不大,分子量分布趋同,物理机械性能也非常接近。  相似文献   

3.
溶聚丁苯链化学结构的NMR研究;溶聚丁苯; 链化学结构; 相容性  相似文献   

4.
研究了反式异戊橡胶合金(TPIR)的结晶性能、加工性能和力学性能及在轿车胎面胶溶聚丁苯橡胶/顺丁橡胶(SSBR/BR)中的应用.研究结果表明,与无定形SSBR和BR相比,TPIR生胶具有常温可结晶性,因此TPIR具有较高的格林强度.毛细管挤出行为研究结果表明,TPIR具有优异的挤出性能,挤出物外观光滑,挤出涨大比小.与SSBR/BR混炼胶相比,用TPIR改性后的SSBR/BR/TPIR混炼胶的格林强度与100%定伸应力随TPIR含量的增加而提高.经150℃硫化反应后制备的SSBR/BR/TPIR硫化胶物理机械性能优异:不仅耐湿滑性能、耐磨耗性能及压缩强度较对比胶提高,其伸张疲劳性能较对比胶提高4倍以上.透射电子显微镜(TEM)及填料分散仪表征结果表明,与SSBR/BR硫化胶相比,SSBR/BR/TPIR硫化胶的填料聚集体平均尺寸降低2μm,填料分散性显著改善.表明TPIR是一种应用于高性能轿车胎面胶的理想胶料.  相似文献   

5.
用分子动力学模拟研究了铆接于带电固体壁面上的两性无规共聚电解质链的构型及其随溶剂的介电常数、系统温度和带电壁面电场的变化。结果表明,聚离子链的构型取决于外电场对链节的作用、链内各链节间的静电作用和链节的热运动(温度)三者的综合作用结果。电场强度较低时,铆接聚离子链与非铆接聚离子链的构型变化类似。电场强度较高时,两性聚离子链构型更为舒展。溶剂介电常数减小,链节间静电作用增强,净电荷比较小的中性或非中性两性聚电解质链倾向于收缩,净电荷比较多的链则膨胀。温度的升高一般总是抵消电场和分子内静电作用的影响,当它占主导地位时将使聚离子链膨胀。  相似文献   

6.
采用分子动力学模拟方法研究了多个温度下氧气、氮气及甲烷在无定型顺式1,4-聚异戊二烯中的扩散系数。在模拟过程中,使用COMPASS力场作为分子力场。应用COMPASS力场的势能函数,聚合物的密度及玻璃化转变温度的计算结果与实验值有较好吻合。在278-378 K的温度范围内,通过3或1.5 ns时长的正则系综动力学模拟,计算了不同温度下氧气、氮气及甲烷的扩散系数。结果表明,根据爱因斯坦关系式计算得到的扩散系数与实验结果比较接近。对气体扩散系数与温度的关系进一步研究,发现在278-378 K温度范围内,甲烷的扩散系数随温度变化的半对数曲线图是非线性的,而氧气和氮气的扩散系数随温度变化的半对数曲线图是线性的。本文研究结果有助于理解温度对气体扩散的影响机制,并为高温下气体在天然橡胶中扩散系数的测定及天然橡胶热氧老化建模分析提供依据。  相似文献   

7.
采用4种含不同官能基团修饰剂改性的二氧化硅SiO2增强溶聚丁苯橡胶(SSBR)/顺丁橡胶(BR)共混体系, 制备了SSBR/BR/SiO2橡胶纳米复合材料, 研究了其结构与性能. 结果表明, 在混炼胶体系中, 与未改性SiO2填充的SSBR/BR相比, 改性SiO2填充的SSBR/BR门尼黏度及结合橡胶含量显著增大, 表明填料-橡胶相互作用显著提高; 硫化焦烧时间缩短60%, 硫化速度增大了35%~40%. 在硫化胶体系中改性SiO2填充的SSBR/BR具有更大的交联密度, 填料分散性明显改善, 同时也表现出更为优异的物理机械性能, 100%和300%定伸模量提高47%以上, 旋转滚筒式磨耗机法(DIN)磨耗降低5%~12%, 生热降低了约7%~13%, 热空气老化性能提升4%~22%, 代表滚动阻力的tanδ在60 ℃降低8%~13%. 此外, 与SSBR/BR/1165MP硫化胶相比, 用90 mmol/kg氨基改性SiO2填充的SSBR/BR硫化胶的抗湿滑性能提高6.9%, 表现出最优的综合性能. 填料的良好分散及填料与聚合物的相互作用增强对于提高SSBR/BR/SiO2胎面胶综合力学性能具有重要意义.  相似文献   

8.
高含氢聚甲基硅氧烷改性聚丙烯酸酯乳液的结构与涂层性能;高含氢聚甲基硅氧烷; 改性聚丙烯酸酯乳液; 核壳型共聚乳胶; 涂层剂  相似文献   

9.
用分子动力学方法模拟了水溶液中聚13丙氨酸分子(A13)由α-螺旋二级结构(α-helix )向无规线团(radom coil)转变的初期过程, 以及同样条件下A13分子分别与两性离子材料表面和疏水性材料表面作用的行为. 二级结构分析、氢键分析、均方根偏移、二面角分布和吸附程度分析结果显示, 两性离子材料表面对在水环境中A13分子的正常行为影响较小. 间接证明了“维持正常构象”假说.  相似文献   

10.
采用分子动力学方法对不同温度(25-120 ℃)及碱浓度(1:100-1:5, 摩尔比)下NaOH和KOH溶液中的氧气进行了模拟. 本文考察了NaOH及KOH溶液中溶剂-溶剂、氧气-溶剂及氧气-溶质的径向分布函数, 并采用爱因斯坦方程从均方位移曲线中计算得到了氧气及溶质离子的扩散系数. 结果显示随着碱浓度的升高, 氧气扩散系数逐渐减少; 在相同条件下, 氧气在NaOH溶液中扩散系数小于在KOH溶液中的扩散系数; 溶质离子扩散系数的变化规律与氧气一致. 通过与现有实验结果对比, 发现了分子动力学方法的可靠性及用于研究实验受限领域的优越性.  相似文献   

11.
NiSO_4改性对聚丙烯腈原丝及其碳纤维结构与性能的影响   总被引:9,自引:1,他引:9  
碳纤维具有高比强度、高比模量、导电、耐热、自润滑等优异的综合性能,在纤维增强复合材料中得到了广泛的应用.可制备碳纤维的前驱体有人造丝、沥青、聚丙烯腈纤维、木质素、聚乙烯纤维、聚苯并噻唑(PBO)纤维等.但大多数高强碳纤维目前仍然是由聚丙烯腈纤维制备的,同时,许多工作都集中在更进一步提高碳纤维的机械性能.特别是在我国, 碳纤维质量与某些发达国家相比,还有较大的差距,急需解决的问题就是如何尽快研制出高力学性能的碳纤维.采用氨基硅氧烷、脂肪族羧酸[1]、CuCl[2]、KMnO 4[3]、CoCl2[4]等有机或无机化学试剂对聚丙烯腈原丝进行化学处理, 以改进最终碳纤维的结构与性能是一种有效的方法.国内在这方面的研究还很少.文献[1 ~4]中所采用的方法都是利用商业聚丙烯腈原丝在碳化前进行洗油、浸渍、洗涤烘干处理 ,增加了碳纤维制备的工序,同时,原丝损伤较大,在连续生产中难以适用.我们在原丝连续制备的同时采用NiSO4溶液浸渍处理聚丙烯腈纤维,本文主要研究了采用NiSO4浸渍改性后聚丙烯腈原丝及其碳纤维的结构与性能.研究表明,采用NiSO4在线浸渍改性聚丙烯腈原丝,生产工艺简单,且能有效地改进最终碳纤维的结构与性能.  相似文献   

12.
用分子动力学方法模拟室温下不同浓度的聚甲基乙烯基醚/水体系的微观溶剂化结构.得到的径向分布函数和氢键给体和受体距离分布表明,聚合物与水形成的氢键比水之间形成的氢键短约0.005nm.准氢键C—H…O的数目是范德华作用对的7.2%.我们发现,在各浓度下,水分子并不能均匀地分布在聚合物结构单元上,即使在很稀的溶液(3.3%,质量分数)中,仍然有10%左右的醚氧没有和水分子形成氢键.这说明在溶液中,不但高分子链间有紧密的接触,而且高分子链内的链段间也有紧密的接触,导致链上的一些醚氧不能和水分子有效地接触而形成氢键.准氢键随浓度的变化和氢键的变化趋势类似,但形成准氢键的结构单元数目与形成氢键的结构单元数目比值在0.2附近.文献上用动态DSC测量低分子量聚甲基乙烯基醚(PVME)水溶液的相转变焓发现,在浓度为30%左右有一转折,与本模拟所得出的在浓度为27%左右氢键和准氢键比例的转折相关,这给相转变焓的转折点提供了分子尺度的微观解释.另外,浓度小于54%的溶液中存在“自由水”,在86%的浓溶液中每个结构单元大约与1.56个水分子缔合.  相似文献   

13.
在轮胎的加工和制备过程中,硫化温度是影响橡胶复合材料网络结构和物理机械性能的重要因素之一.本文研究了硫化温度(140、150、160、170和180℃)对溶聚丁苯橡胶(SSBR)/顺丁橡胶(BR)(未填充体系)及SSBR/BR/白炭黑(SiO2)(填充体系)纳米复合材料的结构和物理机械性能的影响.结果表明:随硫化温度的...  相似文献   

14.
表面活性剂可以与污泥表面的胞外聚合物(EPS)吸附形成胶束,释放出自由水和结合水,从而达到改善污泥脱水性能的目的.本文采用粗粒化的分子动力学模拟方法,研究了Gemini表面活性剂与EPS形成复合物的过程和结构.聚电解质链的亲疏水性对吸附过程有显著影响,亲水聚电解质链与Gemini表面活性剂吸附的主要驱动力为静电吸引,Gemini表面活性剂头基吸附在链上,尾链朝向溶剂;疏水聚电解质链与Gemini表面活性剂吸附过程由静电作用与疏水作用共同促进,Gemini表面活性剂以平行于聚电解质链的构型存在.Gemini表面活性剂联结基团长度对吸附过程的影响甚微;聚电解质链的电荷密度对亲水聚电解质链的吸附产生协同作用,对疏水聚电解质链的吸附不产生作用.  相似文献   

15.
通过分子动力学方法,研究了不同冷速下贵金属Au在温度2000~300K的冷却过程中微观结构的变化特点。结果发现,冷却速度对Au的微观结构产生重要影响。采用偶关联函数和键对分析技术对原子局域团簇结构进行分析,并考察了冷却过程中原子势能随温度的变化,比较了Au的微观结构转变与能量变化的对应关系,从能量转化的角度对冷却过程中Au的结构变化进行了说明。  相似文献   

16.
本文采用GPC-[η]联用的方法研究了一组链立规结构服从Berlloulli分布的聚甲基丙烯酸甲酯的无扰尺寸。对凝胶色谱柱组的扩展效应对无扰尺寸测定的影响进行了讨论。实验结果与Flory等人的Monte Carlo计算结果一致。本文还修正了独立内旋转条件下计算高分子链无扰尺寸的Ptitsyn公式。实验订定了不同规整度的甲基丙烯酸甲酯在30℃、四氢呋喃中的Mark-Houwink方程[η]=KM~α。  相似文献   

17.
用分子动力学模拟方法对液态Au3Cu冷却过程进行了研究,考察了不同冷却速度下Au3Cu结构变化特点,原子间相互作用势采用F-S多体势,结构分析采用键取向序和对分析技术.计算结果表明,冷却速度对液态Au3Cu能量及结构转变有重要影响,给出了不同冷却速度下液态Au3Cu结构转变的微观信息.  相似文献   

18.
林美娟  王文  章文贡 《应用化学》2003,20(12):1188-0
掺三异丙氧基稀土的聚甲基丙烯酸甲酯的结构与性能;掺杂  相似文献   

19.
利用分子动力学模拟方法,对比考察了平衡条件、外压作用、梯度电场作用下,摩尔比为1:1 的甲醇-水混合溶液在纳米碳管(CNT)中的静态结构以及输运行为. 研究发现:在平衡体系与外压作用下,纳米碳管内甲醇与水呈现出明显的不混溶现象,甲醇主要分布于管壁附近,水分子主要分布于纳米碳管轴心附近;而在梯度电场作用下,纳米碳管由疏水性向亲水性转变,更多的水分子分布于管壁,导致纳米碳管内甲醇-水的不混溶现象消失. 另一方面,在外压作用下,纳米碳管内甲醇与水呈现单向移动;而在梯度电场下,甲醇与水呈现快速的双向移动,其流通量较相应外压作用体系高出近一个数量级,但由于双向的流通量大小相近,导致净流通量与外压作用下的净流通量差异不大.  相似文献   

20.
利用分子动力学模拟方法,对比考察了平衡条件、外压作用、梯度电场作用下,摩尔比为1:1的甲醇-水混合溶液在纳米碳管(CNT)中的静态结构以及输运行为.研究发现:在平衡体系与外压作用下,纳米碳管内甲醇与水呈现出明显的不混溶现象,甲醇主要分布于管壁附近,水分子主要分布于纳米碳管轴心附近;而在梯度电场作用下,纳米碳管由疏水性向亲水性转变,更多的水分子分布于管壁,导致纳米碳管内甲醇-水的不混溶现象消失.另一方面,在外压作用下,纳米碳管内甲醇与水呈现单向移动;而在梯度电场下,甲醇与水呈现快速的双向移动,其流通量较相应外压作用体系高出近一个数量级,但由于双向的流通量大小相近,导致净流通量与外压作用下的净流通量差异不大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号