首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 758 毫秒
1.
本文利用低温扫描隧道显微术和第一性原理计算研究了吸附在Au(111)表面的酞菁分子(H2Pc)与Co原子在单分子水平上的金属化反应过程. 通过扫描探针的操纵手段,以可控的方式原位实现了单个H2Pc分子与钴原子反应生成CoPc的金属化酞菁产物,揭示出源于H2Pc和Co原子的π-d相互作用的中间过程. 结合第一性原理计算和中间产物的图像模拟,进一步阐明了这一氧化还原反应中成键和断键的关键机制,即脱氢和金属化过程并非由Co原子和吡咯环的H作用所致,而与Co原子和吡咯环上的N原子之间的作用有关.  相似文献   

2.
利用低温超高真空扫描隧道显微镜对单个钴酞菁分子实现了选键化学反应.通过对吸附于Au(111)表面的单个钴酞菁分子外围H原子的"剪裁",并用实验图像和谱学方法,结合第一性原理理论计算研究了逐步去除钴酞菁分子8个外围H原子的过程.理论计算结果再现了实验中所观测到的分子空间构型的变化,并阐明了吸附体系中局域自旋的恢复和变化过程.  相似文献   

3.
采用第一性原理方法研究了NH3分子在LiH(100)晶面的表面吸附情况. 通过研究LiH(100) /NH3体系的吸附位置、吸附能和电子结构,发现NH3分子在Li3N (100)晶面主要是化学吸附,初始位置为NH3分子中N-H键在Li顶位时失去一个H原子,并在LiH(110)面形成NH2基,其吸附能为0.511 eV,属于强化学吸附,吸附作用最强. 此时NH2基与附近H原子和Li原子之间为离子键作用,NH2基中N—H键为共价键;NH3分子中另一个H原子与LiH表面的一个H原子形成一个H2分子逸出表面. H2分子中H-H键为明显的共价键.  相似文献   

4.
采用第一性原理方法研究了NH3分子在LiH(100)晶面的表面吸附情况.通过研究LiH(100)/NH3体系的吸附位置、吸附能和电子结构,发现NH3分子在LiH(100)晶面主要是化学吸附,初始位置为NH3分子中N-H键在Li顶住时失去一个H原子,并在LiH(100)面形成NH2基,其吸附能为0.511 eV,属于强化学吸附,吸附作用最强.此时NH2基与附近H原子和Li原子之间为离子键作用,NH2基中N—H键为共价键;NH3分子中另一个H原子与LiH表面的一个H原子形成一个H2分子逸出表面.H2分子中H-H键为明显的共价键.  相似文献   

5.
本文选用混杂的B3LYP密度泛函理论方法,在Lanl2dz水平上,对5,15-二(二茂铁基)-卟啉酞菁钇[Por(Fc)2]Y(Pc)的结构进行了优化,结果表明,5,15-二(二茂铁基)-卟啉酞菁钇呈现出三明治型构型,卟啉环与酞菁环呈穹型围绕在金属钇原子周围。对分子内主要的键长与键角进行了理论计算,通过频率计算,得到了5,15-二(二茂铁基)-卟啉酞菁钇[Por(Fc)2]Y(Pc)的红外光谱图,与实验所得的红外光谱图进行比对,将理论计算和实验所得的光谱主要振动峰进行了线性回归拟合,相关系数为0.992,标准偏差为16.96。理论计算与实验所获得的红外光谱图基本一致,说明本文所选用的DFT理论计算方法是可行的。通过GaussView软件对5,15-二(二茂铁基)-卟啉酞菁钇的红外谱带简正振动模式进行了指认。此外,分析讨论了5,15-二(二茂铁基)-卟啉酞菁钇[Por(Fc)2]Y(Pc)的分子静电势,确定了极大值与极小值的位置。对于研究5,15-二(二茂铁基)-卟啉酞菁钇分子的性质,提供了相应的理论基础。  相似文献   

6.
利用分子动力学方法研究了H原子与C/Be样品的相互作用过程,当H原子轰击C/Be样品时,发现有一些H原子渗入样品中并且滞留在样品中,H原子的滞留率随H原子的初始入射能量的升高呈线性增长,有些沉积在样品中H原子与C原子相互作用形成H-C键。溅射产物以H原子和H2分子为主。H和H2的产额率随初始入射能量的变化趋势相反,分析了不同机制下产物H和H2的产额率随初始入射能量的关系,且通过分析H原子的入射能量和样品的原子密度的关系来研究轰击后的样品,发现样品中原子分布变化很小,同时分析了化合物中的化学键分布变化较小,只是其化学键的分布峰向样品表面移动。  相似文献   

7.
采用密度泛函理论中的广义梯度近似研究C6Li吸附H2O分子并将之进行分解的催化过程.几何优化发现:Li原子最稳定的吸附位置是位于C原子顶位上方.研究表明,第一个H2O分子吸附在C6Li上需要克服1.77 eV的能量势垒,然后分解为H和OH且与Li原子成键.当吸附第二个H2O分子时,第二个H2O分子需要克服1.2 eV的能量势垒分解为H和OH,其中H与Li原子上的H原子结合成H2,OH则替代Li原子上的H结合在Li原子上.因此C6Li可以作为催化剂将H2O分子进行分解得到H2.分析可知:C6Li主要是通过Li原子与H2O之间形成的偶极矩作用来吸附H2O分子,与C60Li12的储氢机制类似.研究结果可为储氢材料的制备提供一个新的思路.  相似文献   

8.
李波  鲍世宁  曹培林 《物理学报》2005,54(12):5784-5790
采用平面波赝势方法,利用基于从头计算的软件包,对乙烯和乙炔基在Ni(110)表面上吸附的问题进行了计算. 在低覆盖度时,孤立的乙烯分子的吸附能比密集时高,乙烯分子的C-C 轴大致沿衬底的Ni原子链方向(即沿[110]晶向),C-C轴与衬底Ni(110)表面有12°的倾斜角,乙烯分子的C—C键的键长为 0.147nm. 乙烯分子中接近顶位的C原子与衬底中距离最近的Ni原子为0.199nm. 在高覆盖度时,乙烯分子在Ni(110)表面上形成c(2×4)再构,每个表面二维元胞中有两个乙烯分子,每个乙烯分子的吸附位置与低覆盖度时相似,而C—C键长比低覆盖度时要短. 乙炔基是乙烯在Ni(110)表面上分解的产物. 关于乙炔基的计算结果表明:乙炔基的两个C原子的间距为0.131nm,比乙烯分子中C原子的间距更短. 与乙烯分子相比,乙炔基的吸附位置更靠近顶位. H原子与吸附在顶位上的C原子相连接,C—H键也大致沿衬底的Ni原子链方向,与Ni表面呈45°的倾斜角. 关键词: 乙烯和乙炔基 平面波赝势方法 吸附几何结构  相似文献   

9.
运用基于密度泛函理论(DFT)的第一性原理方法研究了O2和H2O单分子在ZnO (101 ̅0)表面上的吸附行为。吸附位点主要考虑了表面的Zn顶位和Zn桥位,同时也考虑了其它可能的吸附行为。对于O2在ZnO (101 ̅0)表面上的吸附设计了9个模型,H2O在ZnO (101 ̅0)表面上的吸附设计了12个模型。通过形成能计算发现,O2在表面上的吸附为正值,H2O的吸附为负值。O2和H2O单分子在表面上发生分子吸附,未见解离形态。对于O2吸附最稳定的结构是O2分子与表面相邻的Zn原子形成了Znslab1-Oads1-Oads2-Znslab2桥连键。其它较为稳定的结构是Oads1原子迁移到下一个表面重复晶胞的O原子位置附近,在表面上形成了Znslab1-Oads1键,同时Oads2原子扩散至表面沟渠上方。对于H2O吸附,不论以何种方式吸附结构都比较稳定。其中最稳定的构型是Oads迁移到下一个表面重复晶胞的O原子位置附近,形成了Znslab1-Oads键以及Oslab3-H氢键。另外较稳定的构型是Oads迁移到ZnO (101 ̅0)表面台阶上方,形成了Znslab1-Oads键以及Oslab1-H氢键。  相似文献   

10.
摘要 利用Gaussian03程序计算出C-H键的键能是1.88eV,键长是0.113nm。已知H-H键能是4.748eV,键长是0.074nm。显然, H-H键能大于C-H键的键能,所以在常温常压下碳纳米管储氢时,以物理吸附H2分子为主,化学形式的C-H键吸附为辅。另外,利用LJ势能函数,计算了H2分子在碳纳米管中C原子所成的六边形中心正上方、C原子正上方以及相邻两C原子中间正上方时H2分子与碳纳米管之间的势能。得到无论管内、管外或者两端,都是H2分子在C原子所成的六边形中心正上方时能量最低。且在管内时H2分子距离管壁的距离是0.320nm,在管外时距离管壁的距离是0.309nm;在两端的管内时距离管壁的距离是0.324nm,在两端的管外时距离管壁的距离是0.313nm。  相似文献   

11.
用密度泛函方法,在ROB3LYP/SDD//ROB3LYP/LANL2MB水平上,对Cu(Ⅱ)-Co(Ⅱ)异双核配合物进行了理论计算,优化得到了它的单、三重态的平衡几何构型,计算了它们的谐振动频率.结果表明:该配合物分子的三重态比单重态稳定,电子自旋布居高度集中在Cu和Co原子上,体系中存在较弱的自旋离域效应.体系的前线分子轨道主要由Cu和Co原子的d轨道和配体原子的p轨道构成,这种构成有利于配体原子与Cu、Co原子之间的电子转移.期望这些研究为这类配合物的合成及分子组装分析研究提供理论参考.  相似文献   

12.
用密度泛函方法,在ROB3LYP/SDD//ROB3LYP/ANI2MB水平上,对Cu(Ⅱ)-Co(Ⅱ)异双核配合物进行了理论计算,优化得到了它的单、三重态的平衡几何构型,计算了它们的谐振动频率.结果表明:该配合物分子的三重态比单重态稳定,电子自旋布居高度集中在Cu和Co原子上,体系中存在较弱的自旋离城效应.体系的前线分子轨道主要由Cu和Co原子的d轨道和配体原子的p轨道构成,这种构成有利于配体原子与Cu、Co原子之间的电子转移.期望这些研究为这类配合物的合成及分子组装分析研究提供理论参考.  相似文献   

13.
利用同步辐射光电发射和铁磁共振(FMR)研究了Co/GaAs(100)界面形成以及Co超薄膜的磁性质.结果表明,在低覆盖度(约为0.2nm)下,Co吸附原子与衬底发生强烈的界面反应,在覆盖度为0.9nm时,形成稳定的界面.从衬底扩散出的Ga原子与Co覆盖层合金化,而部分As原子与Co原子发生反应,形成稳定的键合,这些反应产物都停留在界面处很窄的区域(0.3—0.4nm)内.另一部分As原子偏析在Co覆盖层表面.结合理论模型,详细地讨论了界面结构及Ga,As原子的深度分布.FMR结果表明,生长的Co超薄膜具 关键词:  相似文献   

14.
利用Gaussian03程序计算出C-H键的键能是1.88 eV,键长是0.113 nm.已知H-H键能是4.748 eV,键长是0.074 nm.显然,H-H键能大于C-H键的键能,所以在常温常压下碳纳米管储氢时,以物理吸附H_2分子为主,化学形式的C-H键吸附为辅.另外,利用LJ势能函数,计算了H_2分子在碳纳米管中C原子所成的六边形中心正上方、C原子正上方以及相邻两C原子中间正上方时H_2分子与碳纳米管之间的势能.得到无论H_2分子是被吸附到管内或管外,还是被吸附到中间区域或两端区域,都是H_2分子在C原子所成的六边形中心正上方时能量最低.当H_2分子被吸附到碳纳米管中间区域时,管内和管外的H_2分子距管壁的距离分别是0.320 nm和0.309 nm;而当H_2分子被吸附到碳纳米管两端区域时,这两个距离分别是0.324 nm和0.313 nm.  相似文献   

15.
用密度泛函B3LYP/STO-3G*和B3LYP/6-31G*方法对血红素模拟物分子铁卟啉分子Fe(TPP)Cl和Fe(TPPF20)Cl进行了几何结构优化和单点能量计算,对它们的分子轨道、电荷密度和自旋密度分布做了详细分析.数据表明,有部分自旋电子由Fe原子向卟啉环转移,同时有部分自旋与Fe原子3d轨道上单电子自旋相反的电子由卟啉环向Fe原子迁移.两个铁卟啉分子的最高占有轨道结构相似,电子和自旋在卟啉环与Fe原子之间的转移是由于Fe-卟啉环间的π键和σ键相互作用引起的,氯化四全氟代苯基铁卟啉分子中的这种转移更强一些、稳定性更强一些.另外,还根据分子轨道对称性讨论了催化活化分子O2的机理.  相似文献   

16.
采用第一性原理研究了H2O分子在Fe(100),Fe(110),Fe(111)三个高对称晶面上的表面吸附.结果表明,H2O分子在三个晶面上的最稳定结构皆为平行于基底表面的顶位吸附结构.H2O分子与三个晶面相互作用的吸附能及几何结构计算结果表明H2O分子与三个晶面的相互作用程度不同,H2O分子与Fe(111)晶面的相互作用最强,其次是Fe(100),相互作用最弱的是Fe(110)表面,而这与晶面原子的排列密度相关.吸附体系的电子结构计算结果也得出了相似的结论.同时电荷布居分析表明,H2O分子与Fe表面相互作用时,O原子与基底原子之间的电荷交换使基底Fe原子表面带负电,导致表面电位降低,也促使Fe表面更易于发生电化学腐蚀反应.  相似文献   

17.
氢致裂纹是制约超高强度钢应用的关键问题,掌握扩散氢的分布行为有助于弄清氢致裂纹的形成机理.本文采用第一性原理方法计算了H原子占据α-Fe晶格间隙和空位时的情况,得到了晶体的稳定构型及能量,并据此分析了H原子在晶格间隙和空位中的溶解倾向;从Mulliken布居、电子密度分布、态密度分布等角度分析了H原子与α-Fe晶体间隙和空位之间的相互作用.结果表明:间隙H原子倾向占据α-Fe四面体间隙位,其1s轨道电子与Fe的4s轨道电子呈微弱共轭杂化;空位是强氢陷阱, H原子倾向占据空位内壁附近的等电荷面.在真空0 K条件下单空位最多稳定溶解3个H原子,且H原子之间未表现出自发形成H2的倾向;间隙和空位中的H原子溶入改变了Fe晶格内电子分布导致原子结合力弱化,并在局部区域形成反键.基于第一性原理能量计算结果开展热力学分析,分析结果表明大多数情况下间隙H原子都是H主要的固溶形式, H平衡溶解度计算结果与实际符合良好.  相似文献   

18.
利用从头算和密度泛函理论研究了腺嘌呤(A)-5-溴尿嘧啶复合物中(T+)中的键合模式. 研究结果表明,T+中的Br原子同时与A分子中的氨基氢和氮原子存在弱的相互作用,在这种结合模式中,Br原子与亲核基团H正面结合,同时与亲电基团N侧面结合,分别形成氢键和卤键.静电势分析发现:T+中的Br原子与A中的N7 (或N1)是通过静电相互吸引的. Br与N原子之间的相互作用通过分子中的原子理论得以证实. 关键点的拓扑参数显示卤键是闭壳层相互作用. 自然键轨道分析说明,A中N原子上孤对电子的电荷主要转移到C{Br的反  相似文献   

19.
应用分子动力学模拟方法研究了黑索金(RDX)在纯高温下的分解机理, 研究结果表明RDX初始分解机理主要为N-N键的断裂形成NO2分子, 然后发生H原子转移反应形成H2O, HONO, HO和NO分子; 通过对RDX热分解反应物和生成物的研究结果表明N2和H2O分子是RDX分解过程中最稳定的生成物, NO2, HNO3, NO, NO3和HONO分子为RDX热分解过程中的中间产物; 在高温4500K, CO, CO2和OH分子出现的频率逐渐提高, 表明这几种分子在高温下更容易形成.  相似文献   

20.
应用分子动力学模拟方法研究了黑索金(RDX)在纯高温下的分解机理, 研究结果表明RDX初始分解机理主要为N-N键的断裂形成NO2分子, 然后发生H原子转移反应形成H2O, HONO, HO和NO分子; 通过对RDX热分解反应物和生成物的研究结果表明N2和H2O分子是RDX分解过程中最稳定的生成物, NO2, HNO3, NO, NO3和HONO分子为RDX热分解过程中的中间产物; 在高温4500K, CO, CO2和OH分子出现的频率逐渐提高, 表明这几种分子在高温下更容易形成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号