首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
郑艳洁  刘爱林  雷云  林新华 《电化学》2013,19(4):383-387
应用交流阻抗法和循环伏安法表征聚苏丹红Ⅲ/GC电极,并研究丹皮酚在该聚合物电极上的电化学行为. 实验表明,聚苏丹红Ⅲ/GC电极对丹皮酚具有良好的电催化作用,在3.0*10-7 ~ 2.2*10-5 mol·L-1浓度范围内,其差示脉冲伏安峰电流随浓度变化呈良好的线性关系,检测限为5.0*10-8 mol·L-1. 该法可用于实际样品中丹皮酚的测定,结果令人满意.  相似文献   

2.
以抗坏血酸为还原剂,采用微波水热法化学还原氧化石墨烯合成了石墨烯纳米片,制备了石墨烯修饰的玻碳电极(RGO/GCE),并采用循环伏安法、计时电量法、交流阻抗法等电化学技术研究了尿酸在该修饰电极上的电化学行为及其影响因素。结果表明,在PBS缓冲溶液中,尿酸(UA)在石墨烯修饰电极上的电极反应是一个受扩散控制的不可逆氧化过程。电极反应的转移电子数n=2,有效面积A=0.182 cm2,扩散系数D=1.51×10-6 cm2.s-1。UA的氧化峰电流与其浓度在5.0×10-6~1.5×10-4 mol/L范围内呈良好线性,r=0.995 7。利用该RGO/GCE修饰电极可以快速准确地测定UA,检出限为2.7×10-7 mol/L,加标回收率为98%~100%。  相似文献   

3.
制备了石墨烯-壳聚糖复合物修饰玻碳电极(GO/CS-GCE),考察了对乙酰氨基酚(APAP)在修饰电极上的电化学行为,发现石墨烯-壳聚糖复合物能较好改善玻碳电极对APAP的电化学性能,APAP在修饰电极上的电化学反应过程是受吸附控制的2电子,2质子反应过程;进一步研究发现在pH=9.16的碳酸钠-碳酸氢钠缓冲体系中,对...  相似文献   

4.
对氯酚在碳纳米管修饰玻碳电极上的电化学行为研究   总被引:1,自引:0,他引:1  
研究了对氯酚在多壁碳纳米管修饰玻碳电极(MWNTs/GC)上的电化学行为。MWNTs/GC电极对对氯酚具有良好的电催化作用,相比玻碳电极对氯酚的氧化峰电位负移76 mV,峰电流达到玻碳电极上的8倍。通过线性扫描伏安法研究了富集时间、溶液pH和扫描速率对对氯酚氧化的影响。并采用计时电流法研究了氧化峰电流与对氯酚的浓度关系,结果显示峰电流与对氯酚的浓度在2.0×10^-7-2.0×10^-4mol/L范围内呈良好线性关系,检出限为8.8×10-8mol/L(S/N=3)。放置7 d后,对氯酚在碳纳米管上的峰电流仍能达到最初电流的96.2%,表明电极的稳定性较好。  相似文献   

5.
制备了聚L-甲硫氨酸/石墨烯修饰的玻碳电极,该电极在0.1 mol/L的磷酸盐缓冲溶液(p H 7.0)中对鸟嘌呤的氧化具有明显的电催化作用。采用循环伏安法(CV)考察了p H值、扫描速率对鸟嘌呤电化学行为的影响。利用示差脉冲伏安法(DPV)对鸟嘌呤进行测定,结果表明在3.6×10-7~4.0×10-5mol/L浓度范围内鸟嘌呤的氧化峰电流与其浓度呈良好的线性关系,相关系数为0.990 4,检出限(S/N=3)为5.0×10-8mol/L。该修饰电极还具有较好的稳定性和重现性。  相似文献   

6.
通过原位聚合的方法制备石墨烯/聚苯胺复合物,并将其滴涂于玻碳电极表面,得到石墨烯/聚苯胺复合膜修饰电极。采用循环伏安法研究了抗坏血酸在石墨烯/聚苯胺复合膜修饰电极上的电化学行为。结果表明,在pH=3.0的磷酸盐缓冲溶液中,抗坏血酸在该修饰电极上出现一个明显的氧化峰,氧化峰电流与其浓度在5.0×10-7~1.0×10-3 mol/L范围内呈良好的线性关系,检出限为1.9×10-7 mol/L。该修饰电极可以用于维生素C片中痕量抗坏血酸的测定,加标回收率为97.5%~105%。  相似文献   

7.
张亚  杜芳艳  郑建斌 《应用化学》2014,31(7):860-864
制备了石墨烯修饰玻碳电极(GN/GCE)。 在0.05 mol/L H2SO4溶液中,用循环伏安法研究了多贝斯在GN/GCE上的电化学行为。 结果表明,GN/GCE对多贝斯的氧化还原反应有明显的电催化作用。 建立了测定多贝斯的新方法,用微分脉冲伏安法测得多贝斯的氧化峰电流与其浓度在2.0×10-9~1.2×10-6 mol/L范围内呈线性关系,检出限为1.0×10-9 mol/L(S/N=3)。 该法可用于胶囊中多贝斯的测定,修饰电极有较好的稳定性和重新性。  相似文献   

8.
以双功能化试剂鞣酸一步还原法制备了鞣酸功能化的石墨烯纳米材料(TA-G)。鞣酸不仅起到还原剂的作用,还用作功能化试剂包裹石墨烯纳米片。将所制备的TA-G用于构建芦丁电化学传感器,可实现电化学信号放大并获得较好的检测灵敏度。电极反应动力学结果表明,芦丁在该修饰电极的电化学行为受表面准可逆过程控制。优化后的实验条件为p H 3.0,TA-G(1.0μg/m L)的电极修饰量为8μL,扫速为100m V/s,富集圈数为100圈。在优化条件下,芦丁的还原峰电流在1.0×10-8~1.0×10-5mol·L-1浓度范围内呈现良好的线性关系,检出限(S/N=3)为6.0×10-9mol/L。该传感器具有较高的稳定性、选择性和特异性,可实现实际样品中芦丁的灵敏检测,从而拓宽了石墨烯的应用领域并为药物的快速检测提供了新思路。  相似文献   

9.
利用电聚合方法在石墨烯修饰的玻碳电极表面制备了聚亚甲基蓝/石墨烯修饰电极(PMB/GH/GCE)。采用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为。在pH 6.9的磷酸盐缓冲溶液中,DA和AA分别在0.208 V和-0.108 V处产生灵敏的氧化峰,与其在聚亚甲基蓝和石墨烯单层修饰电极上的电化学行为相比,两者的峰电流明显增加,峰电位差达316 mV。研究表明,电聚合方法使亚甲基蓝牢固地非共价修饰到石墨烯上,并产生协同增效作用,较好地提高了电极的灵敏度和分子识别性能,有利于在大量AA存在下实现对DA的选择性测定。在1.00×10-3mol/L AA的存在下,DA的差分脉冲伏安法峰电流与其浓度在1.00×10-7~5.00×10-3mol/L范围内呈良好的线性关系,检出限达1.00×10-8mol/L。将该方法用于盐酸多巴胺注射液的测定,结果满意。  相似文献   

10.
基于石墨烯微片修饰玻碳电极对抗坏血酸的电催化作用,建立了测定抗坏血酸的电化学分析方法。石墨烯微片修饰玻碳电极与裸玻碳电极相比,显著提高了抗坏血酸的氧化峰电流,降低了氧化峰电位,提高了测定的灵敏度。该电极测定抗坏血酸的线性范围为5.0×10-5~2.5×10-2mol/L,最低检测限为6.5×10-7mol/L(信噪比=3)。  相似文献   

11.
李春兰  朱旭  徐茂田 《分析测试学报》2013,32(12):1497-1501
利用石墨烯/DNA/纳米金(Gr/DNA/GNPs)修饰电极对布洛芬(IB)的电化学行为进行了研究。分别采用紫外-可见分光光度法和扫描电镜成像技术对Gr/DNA/GNPs复合材料进行了表征。比较了不同修饰电极的检测效果并考察了缓冲体系及修饰量等对测定的影响。实验结果表明,IB在Gr/DNA/GNPs复合材料修饰电极上的电化学信号较为明显,在0.1 mol·L-1PBS缓冲溶液(pH 6.8)中,IB于0.83 V处可观察到1个灵敏的氧化峰。在最佳实验条件下对IB进行检测,其线性范围为7.2×10-7~4.9×10-5mol·L-1,检出限为1.5×10-7mol·L-1。干扰实验和重复实验的结果表明,该修饰电极选择性及重现性良好。用于实际样品的检测,结果满意。  相似文献   

12.
制备了TiO2-石墨烯修饰玻碳电极。用循环伏安法(CV)和差分脉冲伏安法(DPV)对间苯二酚在该修饰电极的电化学行为进行了研究。实验结果表明,在pH值为6.0的磷酸盐缓冲液(PBS)中,该修饰电极对间苯二酚具有良好的电催化作用。对TiO2-石墨烯用量、支持电解质、pH和扫描速度等实验条件进行了优化。在优化条件下,利用DPV测定,间苯二酚的氧化峰电流与其浓度在1.0×10-6~1.0×10-4mol/L范围内呈良好的线性关系,线性相关系数为0.995。检出限为2×10-7mol/L。将该方法应用于模拟水样中间苯二酚的测定,回收率为96.5~104.2%。  相似文献   

13.
丹皮酚的电化学氧化及其反应机理研究   总被引:1,自引:0,他引:1  
王晔  吴剑  李端  汪海燕  金葆康 《分析化学》2006,34(9):1331-1334
研究了在碱性磷酸盐缓冲溶液体系中,丹皮酚在固体电极上的电化学吸附氧化行为。与苯酚的电化学性质比较表明,碱性溶液中丹皮酚在电极表面上发生类似的不可逆的氧化。氧化产物发生随后化学反应,在电极表面生成致密的不导电聚合物膜。利用超微电极技术研究了丹皮酚电化学氧化的动力学过程,并用时间分辨快速扫描现场红外光谱电化学证明了电极表面的聚合物膜是芳醚类聚合物。  相似文献   

14.
赵永昕  李莉  王坤  陆天虹  杨小弟  李卉卉 《应用化学》2012,29(10):1206-1211
制备了石墨烯(CRG)-壳聚糖(CS)修饰玻碳(CRG-CS/GC)电极,用循环伏安法和示差脉冲伏安法研究了五氯酚(PCP)的电化学行为,发现其氧化电流信号与GC电极相比明显增强,表明修饰电极对PCP具有较强的吸附作用,并能够加速电子传递。 建立了一种灵敏简便、重现性好、稳定性好的测定PCP的新修饰电极方法,线性响应范围为1.00×10-7~1.00×10-5 mol/L(R=0.9975),检测限为2.3×10-8 mol/L(S/N=3)。 将该修饰电极应用于实际水样分析,回收率为97%~103%。  相似文献   

15.
研究了咖啡酸修饰玻碳电极的制备及其电化学性质,测定了电极反应的动力学常数。实验结果表明,在pH7.0的磷酸盐缓冲溶液中,多巴胺(DA)在该修饰电极上产生一灵敏的氧化峰,峰电流与DA浓度在5.0×10-6~1.0×10-4mol/L范围内良好线性关系,检出限为9.0×10-7mol/L。该修饰膜对DA有增敏作用,可望用于DA的测定。  相似文献   

16.
胡椒碱在碳纳米管修饰电极上的电化学行为研究   总被引:1,自引:1,他引:0  
研究了胡椒碱在碳纳米管修饰电极上的电化学行为,在pH为6.4的磷酸盐缓冲溶液中,胡椒碱在-1.12V(vs.SCE)处有一灵敏的还原峰.与裸电极相比,还原峰电位明显正移,峰电流显著增加,表明该修饰电极对胡椒碱的还原反应具有明显的催化作用.峰电流与胡椒碱的浓度在10-6~10-5mol/L范围内呈良好的线性关系(r=0.995),检出限为2.0×10-7mol/L.同时,计算了电荷转移数和扩散系数,考查了修饰电极的重现性,7次平行测量的RSD为4.96%.  相似文献   

17.
基于碱性介质中鲁米诺在石墨烯修饰玻碳电极(GCE)表面的弱电化学发光信号可被少量甲巯咪唑显著增敏的原理建立了一种灵敏测定甲巯咪唑的电化学发光新方法。实验考察了反应介质、石墨烯用量、鲁米诺浓度及电化学扫描速率对体系电化学发光信号的影响。结果发现:在8. 0μL的石墨烯用量、0. 01 mol·L~(-1)NaOH、0. 7μmol·L~(-1)鲁米诺及100 mV/s的扫描速率的优化条件下,甲巯咪唑浓度在6. 0×10~(-8)~1. 0×10~(-5)mol·L~(-1)范围内与其增敏的电化学发光强度呈良好的线性关系,检出限为2. 0×10~(-8)mol·L~(-1),其相对标准偏差(RSD)为3. 5%(c=0. 5μmol·L~(-1),n=11)。该方法可用于甲巯咪唑含量的临床测定,结果较为满意。  相似文献   

18.
尤文钰  杨铁金 《化学通报》2016,79(11):1035-1040
本文建立一种新型的青蒿素传感器。首先,在玻碳电极上滴涂氧化石墨,通过电化学方法将氧化石墨还原为石墨烯,然后,在石墨烯上沉积纳米银得到石墨烯/纳米银修饰电极,它作为检测青蒿素的电化学传感器。用此电极对青蒿素进行测定,并通过循环伏安法、差分脉冲伏安法、交流阻抗法等研究其电化学行为。该修饰电极在测定青蒿素溶液时,表现出较正的还原电位和较大的峰电流等优势;对其实验条件如电解质溶液的p H、应用电势等进行了探查,该电化学传感器在青蒿素溶液浓度范围为1.0×10-8~3.0×10-5mol/L时与其还原峰电流呈现良好的线性关系,最低检出限为1.2×10-9mol/L(S/N=3)。此外,对该传感器的稳定性和重现性等也进行了研究,获得令人满意的结果。  相似文献   

19.
采用水热法合成了纳米氧化锌-氧化石墨烯复合材料,并基于该复合材料构制了一种新型双酚A传感器,研究了该传感器的电化学行为。结果表明,在含8.0×10-5mol/L CTAB的p H 7.0磷酸盐缓冲液中,双酚A在0.573V处出现1个不可逆的氧化峰,具有良好的电化学响应;其氧化峰电流与浓度在1.0×10-8~4.0×10-5mol/L范围内呈良好的线性关系,检出限为5.0×10-9mol/L;对模拟环境水样中双酚A进行3次平行测定的回收率在96.3%~101.9%之间,相对误差在1.2%~3.8%范围内。该传感器具有灵敏度高、线性范围宽的特点。  相似文献   

20.
研究了丹皮酚(PN)在3-氨基丙基三氧基硅烷(APTS)与离子液体([BnMIM]PF6)复合修饰碳糊电极(APTS-[BnMIM]PF6/CPE)上的电化学行为和电化学动力学性质,并用循环伏安法(CV)及计时电流法(CA)测得PN在APTS-[BnMIM]PF6/CPE上的电极反应动力学参数。实验结果表明,PN在APTS-[BnMIM]PF6/CPE上发生了受扩散控制的不可逆电化学氧化过程。用方波伏安法(SWV)测得PN氧化峰电流与其浓度在9.0×10-7~2.0×10-4mol·L-1和3.0×10-4~1.5×10-3mol·L-1范围内呈良好线性关系,检出限(LOD,S/N=3)和定量下限(LOQ,S/N=10)分别为3.5×10-8mol·L-1和1.2×10-7mol·L-1。同时运用该方法对丹皮酚注射液中PN含量进行了电化学定量测定,其RSD为0.58%~2.4%,加标回收率为96.0%~102.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号