首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physical-layer (pulse-coupled) techniques for distributed synchronization in wireless networks are attracting significant attention for their efficiency and scalability. In this paper, the model of pulse-coupled discrete Phase Locked Loops is reviewed and further investigated in two directions. At first, we extend the characterization of (frequency or phase) synchronous states and convergence conditions from homogeneous networks, where all the nodes have the same power constraints, to more general heterogeneous networks. Towards this goal, we build on recent results on algebraic graph theory for generally non-bidirectional graphs, and derive: (i) necessary and sufficient conditions for global synchronization of the network; (ii) closed-form expressions for the asymptotic values of frequency and phases, as a function of the network topology. In the second part of the paper, an application of pulse-coupled synchronization is considered, namely data collection in a sensor network. The energy efficiency of two medium access protocols for data collection from a set of randomly located sensors to an access point is compared: (i) basic ALOHA (which does not require time synchronization among the sensors); (ii) slotted ALOHA, where time synchronization is achieved via pulse-coupled clocks. Analysis shows that the energy spent for maintaining synchronization in slotted ALOHA pays off in terms of total energy consumption with respect to basic ALOHA provided that the number of sensors is sufficiently small. Moreover, the energy gain is proved to depend explicitly on the system load (in terms of packets /s), hardware and topology of the network.  相似文献   

2.
张智  傅忠谦  严钢 《中国物理 B》2009,18(6):2209-2212
Synchronizability of complex oscillators networks has attracted much research interest in recent years. In contrast, in this paper we investigate numerically the synchronization speed, rather than the synchronizability or synchronization stability, of identical oscillators on complex networks with communities. A new weighted community network model is employed here, in which the community strength could be tunable by one parameter δ. The results showed that the synchronization speed of identical oscillators on community networks could reach a maximal value when δ is around 0.1. We argue that this is induced by the competition between the community partition and the scale-free property of the networks. Moreover, we have given the corresponding analysis through the second least eigenvalue λ2 of the Laplacian matrix of the network which supports the previous result that the synchronization speed is determined by the value of λ2.  相似文献   

3.
This paper presents the first implementation of a two-way relay network based on the principle of physical-layer network coding (PNC). To date, only a simplified version of PNC, called analog network coding (ANC), has been successfully implemented. The advantage of ANC is that it is simple to implement; the disadvantage, on the other hand, is that the relay amplifies the noise along with the signal before forwarding the signal. PNC systems in which the relay performs XOR or other denoising PNC mappings of the received signal have the potential for significantly better performance. However, the implementation of such PNC systems poses many challenges. For example, the relay in a PNC system must be able to deal with symbol and carrier-phase asynchronies of the simultaneous signals received from multiple nodes, and the relay must perform channel estimation before detecting the signals. We investigate a PNC implementation in the frequency domain, referred to as FPNC, to tackle these challenges. FPNC is based on OFDM. In FPNC, XOR mapping is performed on the OFDM samples in each subcarrier rather than on the samples in the time domain. We implement FPNC on the universal soft radio peripheral (USRP) platform. Our implementation requires only moderate modifications of the packet preamble design of 802.11a/g OFDM PHY. With the help of the cyclic prefix (CP) in OFDM, symbol asynchrony and the multi-path fading effects can be dealt with simultaneously in a similar fashion. Our experimental results show that symbol-synchronous and symbol-asynchronous FPNC have essentially the same BER performance, for both channel-coded and non-channel-coded FPNC systems.  相似文献   

4.
L. Xu  C.W. Chow 《Optics Communications》2011,284(14):3518-3521
We propose and demonstrate a bidirectional transmission, hybrid wired and wireless access network based on subcarrier modulation (SCM) techniques. The scheme simultaneously enables the dispersion-tolerant transmission of millimeter (mm)-wave signals for use in wireless access networks, downstream baseband signals for optical wired access networks, and optical continuous-wave (CW) carriers for use in upstream data remodulations. Error-free transmissions through a 25-km length of single mode fiber (SMF) for both the downstream baseband and the remodulated upstream signals are confirmed by bit-error-rate (BER) measurements. The dispersion tolerance of the radio-over-fiber (RoF) signal is assessed using numerical simulations.  相似文献   

5.
It is believed that the integration of wired and wireless access networks (or heterogeneous network) will provide high bandwidth and flexibility for both fixed and mobile users in a single and cost-effective platform. Here, we propose and demonstrate a signal remodulated wired and wireless network with wireless signal broadcast. Dark-return-to-zero (DRZ) and polarization-shift-keying (PolSK) signals are used for the downstream wired and wireless applications respectively. At the remote antenna unit (RAU), the PolSK signal is demodulated to produce the binary-phase-shift-keying (BPSK) signal, which will be used for the wireless broadcast application. Signal remodulation is demonstrated using reflective semiconductor optical amplifier (RSOA) as a colorless reflective modulator in the optical networking unit (ONU)/RAU. The downstream signal is remodulated at the ONU/RAU to produce the non-return-to-zero (NRZ) upstream signal.  相似文献   

6.
Mobile traffic in cellular based networks is increasing exponentially, mainly due to the use of data intensive services like video. One effective way to cope with these demands is to reduce the cell-size by deploying small-cells along the coverage area of the current macro-cell system. The deployment of small-cells significantly improves the indoor coverage. Nevertheless, as additional spectrum licenses are difficult and expensive to acquire, it is expected that the macro and small-cells will coexist under the same spectrum. The coexistence of the two systems results in cross-tier/inter-system interference. In this context, we consider the application of joint signal alignment (SA) and physical network coding (PNC) for the uplink of heterogeneous networks, in order to cancel the interference generated from small-cells at the macro-cell user terminal. The joint design of SA and PNC allows to serve more users than the case where only PNC or interference alignment (IA) is employed individually. We compare our proposed joint SA-PNC schemes with the recently designed IA based techniques for the uplink heterogeneous systems. Simulation results show that the proposed SA-PNC is quite efficient to remove the inter-tier/system interference while allowing to increase the overall data rate, by serving more users, as compared with the IA based methods  相似文献   

7.
In this paper we present weighted Koch networks based on classic Koch networks. A new method is used to determine the average receiving time (ART), whose key step is to write the sum of mean first-passage times (MFPTs) for all nodes to absorption at the trap located at a hub node as a recursive relation. We show that the ART exhibits a sublinear or linear dependence on network order. Thus, the weighted Koch networks are more efficient than classic Koch networks in receiving information. Moreover, average weighted shortest path (AWSP) is calculated. In the infinite network order limit, the AWSP depends on the scaling factor. The weighted Koch network grows unbounded but with the logarithm of the network size, while the weighted shortest paths stay bounded.  相似文献   

8.
The propensity for synchronization of complex networks with directed and weighted links is considered. We show that a weighting procedure based upon the global structure of network pathways enhances complete synchronization of identical dynamical units in scale-free networks. Furthermore, we numerically show that very similar conditions hold also for phase synchronization of nonidentical chaotic oscillators.  相似文献   

9.
Optical wireless communication (OWC) enables to establish the backhaul in the fifth generation (5G) wireless communication networks. The air turbulence, however, could distort the phases of optical signals, thus limit transmission capacity. In this paper, we study the correction of phase distortions by using the Gerchberg–Saxton (GS) algorithm. The air turbulence-induced phase is generated by the Monte-Carlo phase screen method, which characterizes the realistic air turbulence effect on the optical signals. The numerical results reveal that the GS algorithm is able to retrieve the phase information with fast convergence by adopting a proper initial condition. Also, the GS algorithm based phase correction in OWC is confirmed.  相似文献   

10.
高扬  陈林  余建军 《光子学报》2014,40(2):161-168
研究了低密度奇偶校验编码与正交频分复用相结合的编码调制技术,从理论上分析了光纤链路中色散和频率选择性衰落的影响,并通过数值模拟仿真,比较了不同编码码率的编码调制信号在长距离单模光纤传输和多模光纤接入网络中的传输性能.仿真结果表明,采用码率为0.75的长码型非规则的低密度奇偶校验编码与正交频分复用相结合的编码调制技术更适合光纤通信系统中的长距离传输和多模接入网络.  相似文献   

11.
In the paper, we applied an adaptive principle to three kinds of complex networks as well as a random network within the context of the Kuramoto model. We found that the adaptive scheme could suppress the negative effect of the heterogeneity in the networks and the phase synchronization is enhanced obviously. The paper mainly investigates the adaptive coupling scheme in the small-world network, the scale-free network, and the modular network. Comparing with other weighted or unweighted static coupling schemes, the adaptive coupling scheme has a better performance in synchronization and communication efficiency, and provides a more realistic picture of synchronization in complex networks.  相似文献   

12.
In this paper, we propose a single hop architecture for a cooperative wireless sensor network and analyze the attained distributed beamforming gain performance using the theory of random arrays. All nodes in the system transmit a single carrier such that the signals add up constructively towards the direction of the fusion center. The potential directive beamforming gains are investigated for different sensor network densities which are expressed as the number of nodes per carrier wavelength squared. The multiple access capability of the sensor network is achieved by employing an on-off keying orthogonal signaling technique, which is usually employed in atmospheric optical systems. Finally, we investigate the average loss in directivity gain when the received signal from each sensor node follows a Ricean distribution. The results show that high directive gains can be achieved in practical wireless sensor networks using simple sensor nodes.  相似文献   

13.
We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns.  相似文献   

14.
15.
Synchronization in different types of weighted networks based on a scale-free weighted network model is investigated. It has been argued that heterogeneity suppresses synchronization in unweighted networks [T. Nishikawa, A.E. Motter, Y.C. Lai, F.C. Hoppensteadt, Phys. Rev. Lett. 91 (2003) 014101]. However, it is shown in this work that as the network becomes more heterogeneous, the synchronizability of Type I symmetrically weighted networks, and Type I and Type II asymmetrically weighted networks is enhanced, while the synchronizability of Type II symmetrically weighted networks is weakened.  相似文献   

16.
In weighted networks, redistribution of link weights can effectively change the properties of networks, even though the corresponding binary topology remains unchanged. In this paper, the effects of weight randomization on synchronization of coupled chaotic maps is investigated on regular weighted networks. The results reveal that synchronizability is enhanced by redistributing of link weights, i.e. coupled maps reach complete synchronization with lower cost. Furthermore, we show numerically that the heterogeneity of link weights could improve the complete synchronization on regular weighted networks.  相似文献   

17.
We investigate the propagation of spiking regularity in noisy feedforward networks (FFNs) based on FitzHugh-Nagumo neuron model systematically. It is found that noise could modulate the transmission of firing rate and spiking regularity. Noise-induced synchronization and synfire-enhanced coherence resonance are also observed when signals propagate in noisy multilayer networks. It is interesting that double coherence resonance (DCR) with the combination of synaptic input correlation and noise intensity is finally attained after the processing layer by layer in FFNs. Furthermore, inhibitory connections also play essential roles in shaping DCR phenomena. Several properties of the neuronal network such as noise intensity, correlation of synaptic inputs, and inhibitory connections can serve as control parameters in modulating both rate coding and the order of temporal coding.  相似文献   

18.
The recent results on nonlinear systems synchronization and control under communication constraints are applied to the remote state estimation and synchronization for a class of exogenously excited nonlinear Lurie systems. State estimation of the chain of diffusively coupled pendulums over the digital communication channel with limited capacity is experimentally studied. Advantage of the adaptive coding procedure under the conditions of the plant model uncertainty and irregular disturbances is shown. Quality of the estimation is evaluated by means of the experiments with the multi-pendulum set-up. Experimental study of master-slave synchronization over network (local network, wireless network) for the system with two cart-pendulums is presented.  相似文献   

19.
We propose a new and power-efficient impulse radio ultawideband (IR-UWB) pulse design concept. The proposed concept is based on a linear sum of modified doublet pulses. The proposed concept is both simulated and experimentally demonstrated. The experimental demonstration employs a photonic scheme that generates the designed pulse using two main steps, mainly optical shaping and differential detection. The optical shaping is performed using a single electro-optic modulator biased in the nonlinear portion of its transfer function, and the differential detection is performed using a balanced photodetector. The generated IR-UWB pulse is fully Federal Communications Commission compliant, even in the highly power-restricted global positioning system band. The proposed optical scheme has potential to be integrated on a compact optical chip and thus suitable for reliable, low-cost, high-speed, short-range UWB wireless access, such as in-building networks.  相似文献   

20.
We study the influence of coupling strength and network topology on synchronization behavior in pulse-coupled networks of bursting Hindmarsh-Rose neurons. Surprisingly, we find that the stability of the completely synchronous state in such networks only depends on the number of signals each neuron receives, independent of all other details of the network topology. This is in contrast with linearly coupled bursting neurons where complete synchrony strongly depends on the network structure and number of cells. Through analysis and numerics, we show that the onset of synchrony in a network with any coupling topology admitting complete synchronization is ensured by one single condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号