首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
朱华  李囡  林新峰  洪业  杨志 《化学学报》2014,72(4):427-432
本研究以具有优良生物学性能的近红外核交联聚合胶束纳米粒子(NIRF-CCPM)为载体,将具有肿瘤靶向性的多肽RGD(精氨酸-甘氨酸-天冬氨酸)与该纳米粒子偶联,并通过放射性核素111In进行标记,放射性标记过程中,标记率96%,放化纯度大于99%. 111In-CCPM-RGD分子探针表现出良好的放射标记/光学性质. 体外稳定性研究表明,25 ℃条件下其在5%小牛血清缓冲液中静置72 h,依然保持有90%的稳定性. 同时采用核医学/光学显像两种影像手段评价了该双模态分子探针在U87肿瘤模型裸鼠体内的代谢情况:在静脉注射11.1 MBq 111In-CCPM-RGD纳米粒子24 h、72 h进行SPECT/CT的显像,其在肿瘤部位表现出特异性的浓集. 同时,其在NIRF的显像中表明相应肿瘤区域出现特异性富集. 111In-CCPM-RGD纳米粒子的设计、合成及初步生物学评价说明其同时兼具光学和核医学显像功能,是性能优良的新型双模态纳米分子探针,能够帮助提高肿瘤的诊断效能,为建立光学/核医学用于肿瘤靶向双模式成像奠定理论基础.  相似文献   

2.
刘斌 《化学进展》1994,6(1):26-40
研究用放射性核素标记单克隆抗体作为肿瘤的导向药物,是核药物化学领域的研究热点.本文从化学角度介绍了单克隆抗体标记技术发展的概况,包括核素的选择,标记的方法,抗体的偶联修饰以及提高肿瘤/正常组织比的方法。  相似文献   

3.
陈俊艺  李银龙  王峰  张天爵  刘志博 《化学通报》2021,84(11):1210-1218
锕-225可发射4个α粒子和2个β粒子,具有较高的传能线密度和局部肿瘤损伤,因此是靶向放射性核素治疗中受到最多关注的放射性核素之一。经典的锕-225是由铀-233衰变产生,或通过natTh(p,x)225Ac反应生产。但目前我国无论是233U来源或natTh来源的225Ac均无法供应。本研究中,我们基于国产CYCIAE-100高能强流回旋加速器实现了我国首次225Ac的加速器生产,获得了超过600 μCi的225Ac,足够2-3个病人的靶向核素治疗。同时我们设计并优化了全固相萃取的225Ac纯化流程,分离出的225Ac的放射性纯度在99.5%以上,该流程操作简便、高效、且可自动化,可随时用于225Ac的大规模生产。综上所述,我们成功地进行了225Ac的生产和分离的初步研究,为我国进一步发展225Ac供应链奠定基础,为我国学者和医生进行靶向α核素治疗提供了225Ac的额外选择。  相似文献   

4.
张咚咚  刘敬民  刘瑶瑶  党梦  方国臻  王硕 《化学进展》2018,30(12):1908-1919
目前,利用纳米粒子传递药物并用于恶性肿瘤组织的靶向识别,进一步提高肿瘤的诊断和治疗水平是一个比较热点的领域,人们期望用制备容易、价格便宜、毒性小的纳米技术来提高肿瘤的治疗效率。然而,由近年的报道来看,所摄入的纳米粒子仅有约0.7%能够到达肿瘤部位,传递效率较低,这无疑加大了治疗应用的难度。本综述中,我们分析了造成纳米粒子靶向药物转运效率较低的原因,包括纳米粒子的转运途径,纳米粒子转运过程中所遇到的屏障,纳米粒子在体内的清除途径等;随后我们介绍了较早应用的聚合物纳米粒子、磁性氧化铁纳米粒子以及目前广泛研究的介孔二氧化硅纳米粒子在药物传递系统构建中的应用情况,还介绍了细胞膜仿生纳米粒子在药物传递系统中的应用;最后,对纳米粒子在药物传递中的研究进行总结和展望。我们希望通过对纳米粒子传递药物的系统研究,进一步促进纳米粒子在药物传递上的研究,加速纳米药物的临床应用。  相似文献   

5.
磁性铁氧化物纳米粒子(MIONPs)是近几十年发展起来的一种具有磁靶向性的纳米材料,其以良好的磁靶向性、小尺寸效应、生物相容性等特点在生物医学领域具有很好的应用前景,尤其在药剂学领域的应用已经成为一个重要的研究方向。本文在总结近年来国内外有关多功能MIONPs研究成果的基础上,阐述了各种铁氧化物纳米粒子在药剂学领域的应用,主要包括MIONPs的智能载药靶向控释、对特殊药物的靶向负载、降低身体的多药耐药性(MDR)、加强药物治疗效果、载药穿透血脑屏障(BBB)等;并讨论了当前应用中的优点和不足。最后,展望了其在药物、药剂学领域的应用前景并指出了一些亟待解决的问题。  相似文献   

6.
《化学进展》2011,(7):1485-1492
近年来,我国放射性药物的发展很迅速,并且在医学诊治疾病中及基础研究中占据越来越重要的地位。放射性诊断药物是指用于体内进行医学诊断的含放射性核素标记的化合物或生物制剂。本文介绍了国内近年放射性诊断药物在神经系统、心血管、肿瘤等方面的研究进展和应用前景,并提出了目前国内放射性药物研究存在的主要问题和今后可能的发展方向:大力...  相似文献   

7.
使用w/o/w复乳法制备聚乳酸载5-氟尿嘧啶超微粒子,使用透射电镜、激光粒度仪和紫外分光光度计对超微粒子进行表征,并考察其体外释药性质。将^99mTc标记的连有VEGF121单克隆抗体的超微粒子通过尾静脉注射到SCID裸鼠体内,观察它对胃癌转移瘤的靶向效果和治疗效果。结果显示超微粒子成圆球形,平均粒径为195.2nm,多分散系数为0.148,靶向载药超微粒子的载药率为8.23%,包封率为24.71%。聚乳酸载5-Fu超微粒子在PBS缓冲溶液中具有较好的控释效果,累积释放量Q与时间平方根t^1/2基本呈线性关系.尾静脉注射靶向超微粒子两小时以后可看到大部分超微粒子集中到肿瘤部位。在所有的实验组中,含5-Fu靶向载药超微粒子组的疗效最好,说明本靶向载药超微粒子具有抑制肿瘤的血管生成并在肿瘤组织释放化疗药物抑制肿瘤生长的双重作用。  相似文献   

8.
金属组学是综合研究生命体内((特别是细胞内))自由或络合的全部金属原子的分布、含量、化学种态及其功能的一门学科,而大科学装置为金属组学研究提供了强有力的工具。本综述本文首先介绍了金属组学发展简史,然后介绍了基于大科学装置的同步辐射技术、中子技术、质子技术及缪子技术等,最后概述了基于大科学装置的空间金属组学、单细胞/单颗粒金属组学的应用示例。基于大科学装置的中子活化技术(NAA)NAA、X-射线荧光光谱(XRF)以及质子激发X射线谱(PIXE )等技术是开展非原位空间金属组学研究的有力手段,而XRF、PIXE以及缪子X射线荧光谱(MXA)为开展原位空间金属组学提供了有力工具,特别是基于XRF的技术,其空间分辨率可低至10 nm级别,是开展原位单细胞/单颗粒金属组学的利器。 新一代同步辐射光源、质子源及缪子源将为空间金属组学、特别是时空金属组学研究提供更强有力工具。  相似文献   

9.
放射极谱首先由Love在1958年提出。在放射极谱中,放射性核素被电还原至金属状态,与汞形成汞齐,或在汞滴上形成不溶性的沉淀膜。在不同电位收集含有放射性的汞滴,测量其放射性,将放射性与电位对应作图,得放射极谱图。方法灵敏度高,可用于检测放射性核素,或经射线辐照活化后检测放射性核素。此法在极谱学及放射化学领域中是非常有用  相似文献   

10.
核酸适体被称为“化学抗体”, 具有与抗体类似或更加优异的特异性和亲和力, 可以精准地靶向靶蛋白, 与靶蛋白特异性结合. 此外, 核酸适体还具有获取简单、 合成简便、 易于进行化学修饰、 不易变性、 靶标范围广、 免疫原性低及细胞内化快等优点, 已被广泛应用于众多研究领域. 在癌症治疗领域, 核酸适体作为一种优异的靶向识别工具和药物递送载体, 可实现抗肿瘤药物的精准递送. 将核酸适体与药物分子偶联, 可通过核酸适体的靶向作用使药物分子随核酸适体共同进入靶细胞, 实现药物分子在靶细胞内的富集, 进而促进靶细胞的死亡. 近年来, 核酸适体偶联药物已成为癌症靶向治疗的前沿新兴领域, 希望通过该领域的深入研究为癌症靶向治疗领域提供新思路. 本文综合评述了以生物偶联技术构建的核酸适体偶联药物及其应用研究.  相似文献   

11.
磁性铁氧化物纳米粒子(MIONPs)是近几十年发展起来的一种具有磁靶向性的纳米材料,其以良好的磁靶向性、小尺寸效应、生物相容性在生物医学领域具有很好的应用前景,尤其在药剂学领域的应用已经成为一个重要的研究热点。本文在总结近年来国内外有关多功能磁性铁氧化物纳米粒子研究成果的基础上,阐述了各种铁氧化物纳米粒子在药剂学领域的应用,主要是:MIONPs的智能载药靶向控释,MIONPs对特殊药物的靶向负载,MIONPs降低身体的多药耐药性(Multidrug resistance, MDR),MIONPs加强药物治疗  相似文献   

12.
金属组学是系统研究一种细胞、组织或完整生物体内全部金属原子的分布、含量、化学种态及其功能的新兴综合学科,它的提出受到人们越来越多的关注。本文综述了金属组学的研究方法,并对各种方法的特点和局限性做了比较说明.ICP-MS与NAA技术可实现多元素同时定量分析,同步辐射微束CT及μRF,EDX,PIXE,SIMS及LA-ICP—MS亦可实现金属组分布研究.金属组学研究目前正处于发展初期,仍有许多困难特别是分析仪器及方法方面的问题有待解决.已有的金属组形态及结构分析工作大多数采用的是较低效率的分析方法,一些正在发展中的关键技术平台,如HTXAS可真正实现高通量的形态或结构分析.此外,生物信息学有望成为金属组学研究的重要工具之一.  相似文献   

13.
α核素211At具有良好的辐射生物学性质,以对肿瘤细胞具有高亲和性的单克隆抗体或多肽类配体为载体则是实现211At肿瘤靶向治疗的最理想方式之一。本文介绍了211At标记蛋白质或多肽的方法的现状与进展,对存在的一些问题及今后的发展方向进行了讨论。  相似文献   

14.
纳米药物在癌症的精准医疗方面具有广阔的应用前景,但纳米材料易被机体免疫系统识别并清除的特性使得其在癌症治疗方面的应用存在很大的局限性.受自然界生物系统的启发,生物细胞介导的药物递送系统近年来得到了广泛关注.该技术通过将生物体内源性细胞膜作为功能材料包覆在纳米药物表面,赋予其细胞膜的天然属性,或者将纳米载药粒子直接与活细胞共孵育,制备载药细胞,有效地将生物体"自体"的性质与"人工"纳米材料的优势相结合.这不仅大大降低了纳米药物的免疫原性,延长其血液循环时间,而且还可使其具备更强的肿瘤靶向能力.本文初步探讨了生物细胞仿生药物递送系统在肿瘤治疗中的研究进展并对其未来研究进行展望.  相似文献   

15.
近年来,纳米药物递送系统在癌症治疗方面的应用受到广泛关注。 传统的纳米药物递送系统存在生物相容性差、靶向性缺乏、在肿瘤部位释药缓慢等问题。 本文设计制备了一种同源细胞膜(M)包覆、癌细胞还原微环境控制释药的脂质体纳米粒子(命名为P-ss-G/D/Sf@M)来递送肝癌治疗药物索拉非尼(Sf)用于肝癌的靶向治疗。 利用薄膜水化法结合静电吸附及过膜挤压法制备包覆细胞膜的空白(P-ss-G/D@M)及载药(P-ss-G/D/Sf@M)纳米粒子。 P-ss-G/D/Sf@M对Sf的载药量为7.2%,包封率为79.9%。 体外释药结果显示,P-ss-G/D/Sf@M在还原条件下会加快药物的释放,48 h时药物释放量达到65%以上,较非还原条件下释药量提高了25%。 体外细胞实验结果证明,包覆肝癌细胞膜的纳米粒子更易被肝癌细胞摄取,表现了对肝癌细胞的靶向性,同时在肿瘤细胞高浓度谷胱甘肽(GSH)还原环境作用下,纳米粒子中的二硫键断裂,迅速释放药物,与非还原敏感载药纳米粒子相比,显著抑制肝癌细胞生长,提高细胞凋亡率。 因此,本文制备的同源细胞膜包覆的智能释药载体有可能用于今后的癌症治疗中。  相似文献   

16.
金属组学是一门新兴的前沿交叉学科,是对若干涉及金属相关生命过程的分子机制以及对细胞与组织内全部金属离子和金属配合物进行综合研究的学科.在金属组学中,生命体系中所有的金属蛋白质、金属酶以及其他含金属的生物分子统称为金属组,这个概念与基因组学中的基因组和蛋白质组学中的蛋白质组相类似.本文对金属组学中涉及的若干概念进行阐述,并将着重介绍金属组学中的研究技术和方法,特别是“组和技术”,即把一种高分辨率分离技术如凝胶电泳/激光切除、色谱或者毛细管电泳与一项高灵敏度检测方法,如电感耦合等离子体质谱、电喷雾电离质谱、基质辅助激光解吸附质谱或者X射线荧光/吸收光谱联合起来.并重点分析了这些方法的优缺点以及在分离鉴别金属蛋白、磷酸化蛋白以及硒蛋白、确定金属蛋白的结构与功能的关系和医药中的金属药物活性抗药性方面的研究中的应用.  相似文献   

17.
堵玉林  梁静 《化学通报》2017,80(9):809-818
传统的抗肿瘤药物大多不具有选择性,在临床治疗中产生了严重的毒副作用。核酸适配体是一种小分子核酸,能够与靶标高亲和性、高特异性地结合。选择与癌症发生发展过程密切相关的生物标记物为靶标进行SELEX过程筛选出的核酸适配体自身可作为药物,也可与药物、siRNA、纳米粒等结合构成靶向给药体系,该体系能靶向作用于特定的肿瘤细胞,降低对正常细胞的毒性,用药量显著降低,药效提高。本文综述了近年来核酸适配体直接作为抗肿瘤药物、药物载体、siRNA载体以及作为纳米材料靶向剂构成多元复合靶向给药体系在肿瘤靶向治疗领域的研究进展。  相似文献   

18.
王宇传 《化学进展》2023,(10):1492-1504
金属是生命过程中必不可少的辅助因子,是许多关键细胞进程中的必需元素。金属组学作为一门新兴的研究领域,旨在了解并揭示基于金属的生命过程的分子机制及金属的生物活性,相关研究在近年来得以蓬勃发展并受到广泛关注。本文详述了金属组学的概念及相关研究技术,重点介绍金属组学的一个重要研究分支——金属蛋白质组学,并对该领域应用于生物医药研究取得的进展进行综述,内容涵盖金属/金属药物在单细胞层面的摄取研究,组织和器官中的金属/金属药物分布研究、及其在细胞内结合靶点蛋白的鉴定及表征,金属蛋白的生物信息学分析等方面。基于以上研究现状,进一步探讨了金属组学技术在生物医药研究中所面临的挑战及发展前景。  相似文献   

19.
夏雷  程震  朱华  杨志 《化学学报》2019,77(2):172-178
探索了有机黑色素纳米粒子对一种目前最有潜力的新型PET成像核素的原位标记方法,制备出新型多功能纳米探针,并进行初步的分子影像研究.以自然存在的黑色素(Melanin)为原料,利用超声破碎法制备超微粒径(5.5 nm)黑色素纳米粒子(MNPs),并使用两端具有氨基的PEG3500对其表面进行修饰,获得具有较好水分散性和氨基活性基团的新型PEG-MNP纳米载体.采用动态光散射(DLS)、透射电镜(TEM)、红外光谱(FTIR)以及核磁氢谱(1H NMR)对纳米粒子进行充分形貌表征.而后使用溴代琥珀酰亚胺(NBS)作为氧化剂进行长半衰期核素124I的原位标记,获得了相应的具有PET成像功能的124I-PEG-MNP纳米载体.而后使用游离124I、124I-PEG-MNP分别进行正常昆明小鼠Micro-PET成像对比研究,同时构建胰腺癌荷瘤鼠模型BxPC3,并进行124I-PEG-MNP肿瘤成像研究.结果显示,长半衰期核素124I对PEG-MNP的标记率可达99%以上,且体外稳定性良好.Micro-PET图像显示,124I-PEG-MNP在小鼠体内未见脱标现象,体内放射性分布与游离124I成像差异明显.通过基于选定甲状腺及肝脏感兴趣区(Region of Interest,ROI)的半定量分析表明,经过124I标记后的PEG-MNP纳米粒子,与原有124I的代谢学行为具有显著的统计学差异(P<0.001).同时,124I-PEG-MNP利用自身的实体瘤高通透性和滞留效应(EPR)在肿瘤部位有明显的富集,并在肿瘤部位滞留超过48 h.上述研究表明,有机纳米粒子PEG-MNP具备标记单质长半衰期核素的能力,并可用于肿瘤模型PET显像,为其进一步构建长循环多模态成像探针提供实验依据.  相似文献   

20.
癌症是世界上第二大死亡原因,其每年的发病率都很高。尽管现有的治疗方法在过去十年中取得了重大进展。但是由于现有多数抗肿瘤药物具有非特异性细胞毒性、生物相容性差和生物利用度低等缺点,导致化疗等方法的治疗效果较差。外泌体是由多种细胞分泌的囊泡,具有磷脂双层结构和纳米颗粒大小。它具有良好的生物相容性、高稳定性和良好的靶向性。在癌症治疗中,外泌体作为一种潜在有效的药物递送系统已经引起越来越多的关注。本文综述了外泌体作为靶向肿瘤药物载体的设计策略,并试图为基于外泌体的纳米载体在各种肿瘤治疗中的应用提供新的见解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号