首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
基于K均值(K-Means)聚类算法进行聚类分析,将气象条件分为三类,并且分析和阐述各类气象条件的特征.针对气象监测数据和空气污染物的时间序列特点,设计基于长短时记忆(LSTM)神经网络的空气污染预测模型.将时空相关性与长短时记忆神经网络算法进行有效的融合,提出基于时空相关性的长短时记忆(SK-LSTM)神经网络的空气污染预测模型.通过空间划分,空间聚集以及空间插值,获得目标区域和周围区域的历史空气质量检测数据和历史气象监测数据,然后通过等权融合方法将时间数据和空间数据进行融合,并将其作为SK-LSTM神经网络算法的输入,最终输出的结果为带有区域协调的污染物浓度预测值.该算法能有效对空气中污染物的浓度进行更准确、高效的预测.最后通过数值仿真验证所提算法的有效性.  相似文献   

2.
跳高运动由助跑、单脚起跳、越过横杆落地等一系列动作组成,跳高运动轨迹是一个复杂的因果系统.在每一个时间节点,运动员的身体姿态符合一定的规律约束.研究建立了跳高运动过程中关键身体关节节点坐标依时间变化的离散过程模型,每个时刻的各关节点位置向量由给定的之前若干个时刻的运动员关节点位置决定.跳高运动员肢体的摆动、关节点位置的变化都对运动员位移有重要作用.运动员重要关节点之间的相互作用,使得跳高运动轨迹难以刻画和预测.随着深度学习的发展,图神经网络在时空特征刻画和预测上具有优势.基于时空图注意力网络结合长短时记忆网络、门控循环单元(STGAT-LSTM、STGAT-GRU)建立了具有空间位置约束的跳高运动员关节点位置随时间变化的模型,用于推算跳高运动员重心和关节点位置轨迹.实验结果表明该模型能够很好地刻画跳高运动的过程,对于关节点位置的预测能够达到较好的效果.研究所提出模型的预测效果比基线模型准确性提高了0.02-0.03米.研究给出了基于神经网络模型进行跳高运动轨迹预测的可行解决方案,可作为跳高运动仿真和技术优化研究的重要参考.  相似文献   

3.
海洋表面温度(SST)具有非平稳、非线性的特征,对处理和预测造成了很大困难.将互补集合经验模态分解(CEEMD)和BP神经网络相结合,对东北太平洋和赤道中、东太平洋这两区域的月平均海洋表面温度距平序列(SSTA)进行模拟预测研究:首先应用CEEMD方法将SSTA分解为不同尺度的一系列本征模函数(IMFs);再运用BP神经网络对各IMFs进行分析预测;最后将各IMFs预测结果进行重构得到最终SSTA的预测值.数值实验的结果表明,应用CEEMD和BP神经网络对东北太平洋和赤道中、东太平洋的SST预测是有效的.  相似文献   

4.
汇率波动率是刻画外汇金融资产收益变化程度的指标,也是度量外汇风险的方法之一,汇率波动对经济与金融系统都有重要的影响。由于非平稳和非线性的特征,准确预测汇率波动率一直是金融研究的重点和难点。为了提高预测汇率波动率的准确性,本文采用基于人民币汇率高频数据计算的已实现波动率和机器学习方法,对数据进行分解集成和建模,提出了一种有效的多尺度EEMD-PSR-SVR-ARIMA预测模型。具体过程如下:首先,采用集合经验模态分解(EEMD)的方法将复杂的时间序列分解成不同尺度的本征模态函数和趋势项;然后采用支持向量回归(SVR)的方法对本征模态函数进行预测,并利用相空间重构和粒子群优化的方法来确定SVR模型的输入维数与参数。同时,使用差分自回归移动平均模型(ARIMA)预测趋势项;最后集成得到模型预测的结果。实证结果表明EEMD-PSR-SVR-ARIMA模型可以有效地提高汇率波动率预测的精度。  相似文献   

5.
以“平安银行” 00001号股票收盘价为实证背景,基于小波分析下的滑动GA-BP-GRACH模型对该股票变化趋势进行预测研究,即:通过小波分解得到两类股票变化数据(低频、高频),并建立滑动窗口下的GA-BP神经网络对其低频数据进行预测,鉴于高频数据表现出的波动性特点,采用GRACH模型进行预测.结果显示,两类模型的预测效果均为良好.最后,再基于小波重构得到股票的最终预测数值.实验表明,所述模型在股票预测方面比传统神经网络模型更加优越,对股票变化规律刻画也有着一定的参考价值.  相似文献   

6.
碳市场价格呈现非线性、非平稳的复杂特性,准确预测具有较大的挑战。基于“分而治之”的思想,提出了一种基于局部回归的多尺度碳市场价格预测模型。提出的模型利用集成经验模态分解(EEMD)对碳市场价格时间序列进行分解。启发于EEMD局部特征分解的特点,对分解后的分量采用局部回归方法进行预测,然后将分量预测结果进行集成。采用的局部回归方法包括局部线性回归(LLP)、局部多项式回归、局部岭回归、局部主成分回归、局部偏最小二乘回归和局部套索回归。实验结果表明基于局部回归的多尺度预测模型具有优异的预测性能。在提出的模型中,EEMD-LLP结构简单且性能更为突出,进一步对EEMD-LLP参数的适应性进行探讨。与新近提出模型的对比结果表明了EEMD-LLP在碳市场价格预测中的有效性。  相似文献   

7.
提出了基于总体平均经验模态分解(EEMD)、最小二乘支持向量机(LSSVM)和BP神经网络的实用综合短期负荷预测方法,进行电力系统短期负荷预测.首先运用EEMD方法将非平稳的负荷序列分解,然后根据分解后各分量的特点选用最佳的核函数,利用最小二乘支持向量机分别对各分量进行预测,最后对各分量预测结果采用BP神经网络重构得到最终的预测结果.对实测数据的分析表明基于该综合方法的电力系统短期负荷预测具有较高的精度.  相似文献   

8.
可吸入细颗粒物PM2.5,其形成与扩散既受人类生产活动影响也受季节气候条件影响,PM2.5浓度变化具有规律与随机交互的非线性特征,传统预测方法遇到较大困难.文章提出了一种基于小波分解的深度学习预测模型WD-LSTM,针对小波分解不具有自适应等局限性提出基于经验模态分解的深度学习预测改进方法EMD-LSTM,对PM2.5...  相似文献   

9.
袁源  郭进利 《运筹与管理》2022,31(12):234-239
复杂网络已经成为复杂系统分析问题的通用方法,随着人工智能和机器学习的广泛兴起,越来越多的学者开始关注在复杂网络上进行机器学习。监督学习作为机器学习的一个重要组成部分,本文深入研究和总结了基于复杂网络的监督学习方法。首先,本文分别从复杂网络和监督学习的理论基础入手,明确了相似性函数和相异性函数的概念和测度方法,系统梳理了复杂网络的构建方法,并阐明了监督学习的概念及其在机器学习中的地位。其次,介绍了监督学习的几种常用算法,梳理了各种算法的研究现状。然后,提出了基于复杂网络监督学习方法未来关注方向。最后,说明了基于复杂网络监督学习方法的局限性,为相关学者的研究提供了参考。  相似文献   

10.
传统的机器学习方法无法捕捉到电力负荷需求的不确定性以及动态变化规律.本文将最新提出的隐马尔可夫模型在线学习算法应用于电力负荷预测研究,充分提取历史数据中的不确定性特征和动态变化规律,并结合分解算法,更精确利用数据中的动态变化特征,从而提高预测精度.算法基于隐马尔可夫概率预测模型,在获得新样本时对模型进行在线更新,适应最新数据;利用STL时序分解算法对负荷数据进行分解,使具有不同不确定性和动态变化规律的分量分离开,再分别使用在线学习算法对不同特征的分量进行预测,构造电力负荷预测组合算法.基于三个公开电力负荷数据集的测试结果表明,相比于单一的在线学习模型,本文提出的组合算法提高了预测精度,预测相对误差最高减少了27%.  相似文献   

11.
为了解决证券投资组合收益预测模型在股票价格波动感知方面的语义细粒度量化不足和有效投资组合灵活性受限的挑战,文章提出了一种综合舆情态势评分模型(SESTM)和图套索(GLASSO)的股票收益系统预测模型.首先,采用分位回归方法对股价波动进行拟合建模,定义了波动幅度和均值序列两条曲线,用于发现与正收益波动相关的词汇.接着,运用SESTM模型从新闻公告语料中通过有监督的方式提取对股票价格波动灵敏感知的相关词汇,并形成与政策、估值和市场情绪密切相关的主题和匹配词典,进而生成舆情态势评分.最后,结合GLASSO方法构建股票价格之间的联动网络结构,并基于该网络构建个股投资组合策略.实证研究以疫情期间生物疫苗板块股票为对象,对网络联动和舆情态势评分模型开展了实验比较.实验结果显示:首先,以波动感知词汇为纽带构建的投资策略更适用于短期预测;其次,在融入反映联动网络的偏相关信息后,投资组合日均对数收益率达到1.6%,相较于未融入偏相关关系的1.4%的情况提高了14.3%,更是随机组合的日均对数收益率0.7%的2倍;而最高收益由随机组合的3.117提高到3.605,提升幅度达到15.6%.以上结果表明,通...  相似文献   

12.
当前的因特网已经演变成为巨大的、复杂的系统,它由各种各样的终端用户、传输线路以及众多的路由器连接而成,承载运营着各种各样的应用,需要多种流量管理的方法才能保证它的健康运行.在网络效用最大化的模型的基础上研究了多路径网络联合拥塞控制和流量工程的跨层优化模型,基于拉格朗日对偶分解得到了分布式的求解方法,仿真结果验证了算法的收敛性,说明了算法可以有效优化网络的资源利用率.  相似文献   

13.
提出了一种基于随机森林和支持向量机的集成模型来预测商业银行财务困境.结果表明,一方面,与多层感知神经网络相比,支持向量机可以更有效地作为集成学习模型的基分类器,虽然多层感知器神经网络在以往的研究中更多地被用于基分类器.另一方面,与现有的bagging、dagging、multiboost、adaboosting、random subspace等集成学习算法相比,该模型的预测性能明显提高.另一个关键发现是,利用银行业、宏观经济状况和国际金融风险变量补充银行层面的脆弱性,可以显著提高模型在商业银行财务困境预测中的表现.  相似文献   

14.
《数理统计与管理》2013,(5):814-822
本文深入分析了灰色预测模型、自回归移动平均(ARIMA)模型和BP神经网络模型的预测特性和优劣,并在此基础上建立了由ARIMA、GM(1,1)和BP神经网络集成的时间序列预测模型。针对呈现趋势变动性和周期波动性二重特性的时间序列,首先建立GM(1,1)模型对序列的趋势项进行预测,然后建立基于ARIMA和BP神经网络的组合模型对序列的周期波动项进行预测,最后用乘积模型对二者预测值进行集成。GDP时间序列实证结果表明:集成模型的预测效果显著高于单一模型,从而证实了集成模型用于GDP预测的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号