首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Applications of persistent luminescence phosphors as night or dark‐light vision materials in many technological fields have fueled up a growing demand for rational control over the emission profiles of the phosphors. This, however, remains a daunting challenge. Now a unique strategy is reported to fine‐tune the persistent luminescence by using all‐inorganic CsPbX3 (X=Cl, Br, and I) perovskite quantum dots (PeQDs) as efficient light‐conversion materials. Full‐spectrum persistent luminescence with wavelengths covering the entire visible spectral region is achieved through tailoring of the PeQD band gap, in parallel with narrow bandwidth of PeQDs and highly synchronized afterglow decay owing to the single energy storage source. These findings break through the limitations of traditional afterglow phosphors, thereby opening up opportunities for persistent luminescence materials for applications such as a white‐emitting persistent light source and dark‐light multicolor displays.  相似文献   

3.
Despite the apparent diversity of the protocols developed for the synthesis of helicenes, they essentially follow the same strategy: the closure of one, or several, internal rings in a key step. Herein, we report the synthesis of a new family of the heterohelicenes consisting of fused silacyclopentadiene rings formed via a facile and novel process. The treatment of oligo(alkynilydenesilylene) precursors of type H2C=CH?(SiMe2?C≡C)n?R (n=3–7), bearing a vinyl group on the terminal silicon atom, with 9‐borabicyclononane leads first to 1,2‐hydroboration of the terminal double bond which then continues with a cascade of intramolecular 1,1‐carboboration reactions accompanied with the closure of a new silole ring after each step affording the target silahelicenes with, currently, up to seven condensed silole rings and with excellent yields. According XRD analysis, the seven fused silole rings of the heptacyclic compound 11 b form an almost complete turn of a helix. The presented one‐pot sequence of reactions is the first example of ring‐by‐ring knitting of a helical framework starting from easily available linear precursors.  相似文献   

4.
5.
6.
7.
The size‐tunable emission of luminescent quantum dots (QDs) makes them highly interesting for applications that range from bioimaging to optoelectronics. For the same applications, engineering their luminescence lifetime, in particular, making it longer, would be as important; however, no rational approach to reach this goal is available to date. We describe a strategy to prolong the emission lifetime of QDs through electronic energy shuttling to the triplet excited state of a surface‐bound molecular chromophore. To implement this idea, we made CdSe QDs of different sizes and carried out self‐assembly with a pyrene derivative. We observed that the conjugates exhibit delayed luminescence, with emission decays that are prolonged by more than 3 orders of magnitude (lifetimes up to 330 μs) compared to the parent CdSe QDs. The mechanism invokes unprecedented reversible quantum dot to organic chromophore electronic energy transfer.  相似文献   

8.
9.
10.
11.
12.
13.
14.
It is shown that a cationic rhodium(I)/biphep complex catalyzes the cycloisomerization of 2‐(alkynylsilylethynyl)phenols, leading to alkynylmethylidene‐benzoxasiloles through concomitant silicon and carbon migration. This unprecedented cycloisomerization presumably proceeds via the formation of rhodium vinylidenes through 1,2‐silicon migration, followed by 1,3‐carbon (alkyne) migration via the formation of hypervalent silicon centers.  相似文献   

15.
16.
17.
18.
19.
20.
A facile approach for preparation of photoluminescent (PL) carbon dots (CDs) is reported. The three resulting CDs emit bright and stable red, green and blue (RGB) colors of luminescence, under a single ultraviolet‐light excitation. Alterations of PL emission of these CDs are tentatively proposed to result from the difference in their particle size and nitrogen content. Interestingly, up‐conversion (UC)PL of these CDs is also observed. Moreover, flexible full‐color emissive PVA films can be achieved through mixing two or three CDs in the appropriate ratios. These CDs also show low cytotoxicity and excellent cellular imaging capability. The facile preparation and unique optical features make these CDs potentially useful in numerous applications such as light‐emitting diodes, full‐color displays, and multiplexed (UC)PL bioimaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号