首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic d / l peptides (CPs) assemble spontaneously via backbone H‐bonding to form extended nanostructures. These modular materials have great potential as versatile bionanomaterials. However, the useful development of CP nanomaterials requires practical methods to direct and control their assembly. In this work, we present novel, heterogeneous, covalently linked CP tetramers that achieve local control over the CP subunit order and composition through coupling of amino acid side‐chains using copper‐activated azide–alkyne cycloaddition and disulfide bond formation. Cryo‐transmission electron microscopy revealed the formation of highly ordered, fibrous nanostructures, while NMR studies showed that these systems have strong intramolecular H‐bonding in solution. The introduction of inter‐CP tethers is expected to enable the development of complex nanomaterials with controllable chemical properties, facilitating the development of precisely functionalized or “decorated” peptide nanostructures.  相似文献   

2.
3.
4.
The first single‐diamond cubic phase in a liquid crystal is reported. This skeletal structure with the space group is formed by self‐assembly of bolaamphiphiles with swallow‐tailed lateral chains. It consists of bundles of π‐conjugated p‐terphenyl rods fused into an infinite network by hydrogen‐bonded spheres at tetrahedral four‐way junctions. We also present a quantitative model relating molecular architecture to the space‐filling requirements of six possible bicontinuous cubic phases, that is, the single‐ and double‐network versions of gyroid, diamond, and “plumber′s nightmare”.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号