首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
4.
5.
6.
曾正志 《中国化学》2002,20(5):474-478
Two new Complexes(Cp)2Ti(Cin)2and (CP2)Ti(Tzea)2(CP=Cyclopentadienyl η^5-C5H5)have been synthesized in THF by the reaction of HCin(Cincofen,2-phenylquinoline-4-carboxylic acid)or HTzea(5-phenyltetrazolyl-2-ethanoic acid)with(Cp)2TiCl2,and characterized by elemental analyses,IR,1H NMR and 13C NMR,UV spectra,molar conductivity,TGDTA.In the complexes the carboxyl groups are coordinated to Ti(IV)in a monodentate manner,The inhibitory actions of the complexes on mice ear tumefaction caused by croton oil and the rat foot granulation growth produced by cotton wool are higher than those of the corresponding ligands HCin,HTzea and [(Cp)2TiCl2],while their toxicities are lower than those of the free ligands.ηη  相似文献   

7.
π‐Allyl (η3‐C3H5), a four‐electron donor, was used as a ligand model to replace η5‐C5Me4SiMe3 in DFT calculations on the tetranuclear yttrium polyhydrido complex (η5‐C5Me4SiMe3)4Y4H8 containing a Y4H8 tetrahedral core structure, which may separate the four π‐allyl groups and hence suppress the allyl ligand coupling during the computation. In terms of the calculated core geometry, isomerization energy barrier, charge population, and frontier orbital features of the complex, the η3‐C3H5 ligand model is comparable to η5‐C5H5. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

8.
9.
10.
11.
12.
13.
14.
Reaction of Ndcl3 with AlCl3 and mesitylene in benzene gives complex [Nd(η6‐1, 3, 5‐C6H3Me3)‐(AlCl4)3](C6H6) (1) which was characterized by elemental analysis, IR spectra, MS and X‐ray diffractions. The X‐ray determination indicates that 1 has a distorted pentagonal bipyramidal geometry and crystallizes in the monoclinic, space group P21/n with a = 0.9586(2), b = 1.1717(5), c = 2.8966(7) nm, β = 90.85 (2)°, V = 3.2529 (6) nm3,Dc= 1.573 g/cm3, Z = 4. A comparison of bond parameters for all the reported Ln (η6‐Ar) (AlCl4)3 complexes indicates that the bond distance of La? C is shortened with the increasing of methyl group on benzene and with the decreasing of radius of lanthanide ions.  相似文献   

15.
The reactions of the bis(trimethylsilyl)acetylene permethylmetallocene complexes CpM(η2‐Me3SiC2SiMe3) (M = Ti ( 1 ), M = Zr ( 2 )) with H2O and CO2 were studied and compared to those of the corresponding metallocene complexes Cp2M(L)(η2‐Me3SiC2SiMe3) (M = Ti ( 3 ), L = – ; M = Zr, L = THF ( 4 )) to understand the influence of the ligands Cp(η5‐C5H5) and Cp*(η5‐C5Me5) as well as the metals titanium and zirconium on the reaction pathways and the obtained products. In the reaction of the permethyltitanocene complex 1 with water the dihydroxy complex CpTi(OH)2 ( 5 ) was formed. This product differs from the well‐known titanoxane Cp2TiOTiCp2 which was obtained by the reaction of the corresponding titanocene complex 3 with water. The reaction of the permethylzirconocene complex 2 with water gives the mononuclear alkenyl zirconocene hydroxide 6 . An analogous product was assumed as the first step in the reaction of the corresponding zirconocene complex 4 with water which ends up in a dinuclear zirconoxane. In the conversion of the permethylzirconocene complex 2 with carbon dioxide the mononuclear insertion product 7 was formed by coupling of carbon dioxide and the acetylene. In contrast, the corresponding zirconocene complex 4 affords, by an analogous reaction, a dinuclear complex. In additional experiments the known complex CpZr(η2‐PhC2SiMe3) ( 8 ) was prepared, starting from CpZrCl2 and Mg in the presence of PhC≡CSiMe3. This complex reacts with carbon dioxide resulting in a mixture of the regioisomeric zirconafuranones 9 a and 9 b . From these in the complex 9 a , having the SiMe3 group in β‐position to the metal, the Zr–C bond was quickly hydrolyzed by water to give the complex CpZr(OH)OC(=O)–C(SiMe3)=CHPh ( 10 a ) compared to complex ( 9 b ) which gives slowly the complex CpZr(OH)OC(=O)–CPh=CH(SiMe3) ( 10 b ).  相似文献   

16.
The title complex, [Ti(C5H5)(C2H6N)2Cl], exhibits two nearly planar dimethylamide groups oriented approximately perpendicular to each other. The Ti→cyclopentadienyl centroid vector lies nearly in the plane of one of the dimethylamide groups. Long‐range contacts between Ti—Cl and cyclopentadienyl H—C groups give rise to geometric ordering in the extended solid.  相似文献   

17.
The X-ray crystal structure of Ti[Me2Si(η5-C5H4)2]S5 has been determined. The coordination about the titanium may be described as a distorted tetrahedron. The (centroid)? Ti? (centroid) angle is 129.2° and the S? Ti? S bond angle 96.1°. The cyclopentadienyl rings are linked by a dimethylsilyl bridge. The sixmembered ring TiS5 has a cyclohexane-like chair configuration. The four S? S distances range from 2.048 to 2.059 Å. Important structural dimensions are compared to those of similar type compounds.  相似文献   

18.
19.
The first title metallocene, 1,3‐bis(dichlorotitanocene)‐1,1,3,3‐tetramethyldisiloxane dichloromethane solvate, [(η5‐C5H5)­TiCl2­(η5‐C5H4­Si­Me2)]2O·­CH2Cl2, (I), crystallizes in space group P21/c. Compound (I) represents the first crystal structure of a bimetallic siloxy‐bridged titanocene. The geometric parameters of (I) are similar to those of the parent titanocene; however, the disiloxane substituents adopt an unexpected eclipsed conformation. The second title metallocene, 1,3‐bis­[(penta­methyl­cyclo­penta­dienyl)­(cyclo­penta­dien­yl)­titanium dichloride]‐1,1,3,3‐tetra­methyl­disiloxane, [(η5‐C5‐Me5)­TiCl2­(η5‐C5H4­Si­Me2)]2O, (II), represents the second crystal structure of a bimetallic siloxy‐bridged titanocene and crystallizes in the space group P21/n. Compound (I) possesses non‐crystallographic twofold molecular symmetry and both metal centers adopt pseudo‐tetrahedral geometries. The geometric parameters of (II) are similar to those of the mixed titanocene Cp*CpTiCl2 (Cp* = C5Me5) and the disiloxane substituents adopt a staggered conformation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号