首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The transformation of C? H bonds into other chemical bonds is of great significance in synthetic chemistry. C? H bond‐activation processes provide a straightforward and atom‐economic strategy for the construction of complex structures; as such, they have attracted widespread interest over the past decade. As a prevalent directing group in the field of C? H activation, the amide group not only offers excellent regiodirecting ability, but is also a potential C? N bond precursor. As a consequence, a variety of nitrogen‐containing heterocycles have been obtained by using these reactions. This Focus Review addresses the recent research into the amide‐directed tandem C? C/C? N bond‐formation process through C? H activation. The large body of research in this field over the past three years has established it as one of the most‐important topics in organic chemistry.  相似文献   

4.
Pick your Pd partners : A number of catalytic systems have been developed for palladium‐catalyzed C? H activation/C? C bond formation. Recent studies concerning the palladium(II)‐catalyzed coupling of C? H bonds with organometallic reagents through a PdII/Pd0 catalytic cycle are discussed (see scheme), and the versatility and practicality of this new mode of catalysis are presented. Unaddressed questions and the potential for development in the field are also addressed.

  相似文献   


5.
6.
7.
Relieving the strain : The rhodium(I)‐catalyzed activation of C C bonds in functionalized cyclobutanes opens a novel route to highly substituted carbo‐ and heterocycles. Particularly intriguing is the differentiation of enantiotopic C C bonds, which leads to the formation of highly enantiomerically enriched lactones, cyclopentanones, and cyclohexenones (see scheme).

  相似文献   


8.
Copper‐catalyzed Ullmann condensations are key reactions for the formation of carbon–heteroatom and carbon–carbon bonds in organic synthesis. These reactions can lead to structural moieties that are prevalent in building blocks of active molecules in the life sciences and in many material precursors. An increasing number of publications have appeared concerning Ullmann‐type intermolecular reactions for the coupling of aryl and vinyl halides with N, O, and C nucleophiles, and this Minireview highlights recent and major developments in this topic since 2004.  相似文献   

9.
[Cp*RhIII]‐catalyzed C H activation of arenes assisted by an oxidizing N O or N N directing group has allowed the construction of a number of hetercycles. In contrast, a polar N O bond is well‐known to undergo O‐atom transfer (OAT) to alkynes. Despite the liability of N O bonds in both C H activation and OAT, these two important areas evolved separately. In this report, [Cp*RhIII] catalysts integrate both areas in an efficient redox‐neutral coupling of quinoline N‐oxides with alkynes to afford α‐(8‐quinolyl)acetophenones. In this process the N O bond acts as both a directing group for C H activation and as an O‐atom donor.  相似文献   

10.
Versatile ruthenium(II) complexes allow for site‐selective C H oxygenations with weakly‐coordinating aldehydes. The challenging C H functionalizations proceed with high chemoselectivity by rate‐determining C H metalation. The new method features an ample substrate scope, which sets the stage for the step‐economical preparation of various bioactive heterocycles.  相似文献   

11.
Efficient copper‐catalyzed aerobic oxidative C? H and C? C functionalization of 1‐[2‐(arylamino)aryl]ethanones leading to acridones has been developed. The procedure involves cleavage of aromatic C? H and acetyl C? C bonds with intramolecular formation of a diarylketone bond. The protocol uses inexpensive Cu(O2CCF3)2 as catalyst, pyridine as additive, and economical and environmentally friendly oxygen as the oxidant, and the corresponding acridones with various functional groups were obtained in moderate to good yields.  相似文献   

12.
An sp 2 /sp 3 get‐together : A novel and efficient method can be used to synthesize 3,3‐disubstitued oxindoles by the direct intramolecular oxidative coupling of an aryl C? H and a C? H center (see scheme; DMF=N,N‐dimethylformamide).

  相似文献   


13.
14.
15.
The efficient RhI‐catalyzed cycloisomerization of benzylallene‐alkynes produced the tricyclo[9.4.0.03,8]pentadecapentaene skeleton through a C H bond activation in good yields. A plausible reaction mechanism proceeds via oxidative addition of the acetylenic C H bond to RhI, an ene‐type cyclization to the vinylidenecarbene–RhI intermediate, and an electrophilic aromatic substitution with the vinylidenecarbene species. It was proposed based on deuteration and competition experiments.  相似文献   

16.
17.
α‐Arylated carbonyl compounds are commonly occurring motifs in biologically interesting molecules and are therefore of high interest to the pharmaceutical industry. Conventional procedures for their synthesis often result in complications in scale‐up, such as the use of stoichiometric amounts of toxic reagents and harsh reaction conditions. Over the last decade, significant efforts have been directed towards the development of metal‐catalyzed α‐arylations of carbonyl compounds as an alternative synthetic approach that operates under milder conditions. This Review summarizes the developments in this area to date, with a focus on how the substrate scope has been expanded through selection of the most appropriate synthetic method, such as the careful choice of ligands, precatalysts, bases, and reaction conditions.  相似文献   

18.
A “niche” topic in the past decade, the asymmetric C? H bond activation has been attracting growing interest over the last few years. Particularly significant advances have been achieved in the field of direct, stereoselective transformations of C(sp2)? H bonds. This Concept article intends to showcase different types of asymmetric C(sp2)? H bond activation reactions, emphasising both the nature of the stereo‐discriminating step and the variability of valuable scaffolds that could be rapidly constructed by means of such strategies.  相似文献   

19.
20.
The copper(I)‐catalyzed alkylation of electron‐deficient polyfluoroarenes with N‐tosylhydrazones and diazo compounds has been developed. This reaction uses readily available starting materials and is operationally simple, thus representing a practical method for the construction of C(sp2) C(sp3) bonds with polyfluoroarenes through direct C H bond functionalization. Mechanistically, copper(I) carbene formation and subsequent migratory insertion are proposed as the key steps in the reaction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号