首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motivated by the concept of maximum entropy methods in signal and image processing, we introduce and discuss a class of ‘directed diffusion equations’ with suitable boundary conditions. The paradigmatic ‘directed diffusion equation’ is The relative entropy $ Sb[f](t): = - \int_\Omega {f(t,x)} \;\ln \;(f(t,x)/b(x))dx $ is rapidly increasing along solution trajectories of (i). This suggests that solving (i) will yield efficient procedures for entropy maximization. We also discuss the asymptotic behavior of solutions of (i)—this is readily done because (i) has a large family of Ljapunov functionals.  相似文献   

2.
The solutions of the equation $ \partial _t^n f(x,t) = \hat L(x,t)f(x,t) + S(x,t) $, for L? a linear operator are derived. Different forms for L? whether it is time independent or time dependent and self-commutative (or not) at different times are considered separately. By using the results obtained, exact solutions of some partial differential equations are found for the first time.  相似文献   

3.
In this paper, we study the multiple solutions for the semilinear elliptic equation where , 1<p<(N + 2)/(N ? 2) for and p>1 for N = 2. We will prove that the problem possesses infinitely many solutions under some assumptions on Q(x). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Let \({f(x, k, d) = x(x + d)\cdots(x + (k - 1)d)}\) be a polynomial with \({k \geq 2}\), \({d \geq 1}\). We consider the Diophantine equation \({\prod_{i = 1}^{r} f(x_i, k_i, d) = y^2}\), which is inspired by a question of Erd?s and Graham [4, p. 67]. Using the theory of Pellian equation, we give infinitely many (nontrivial) positive integer solutions of the above Diophantine equation for some cases.  相似文献   

5.
In this paper the equation $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}} - \Delta u + a(x)u = |u|^{p - 1} u\;{\rm in }\;{\R}^N $ is considered, when N ≥ 2, p > 1, and $p < {{N + 2} \over {N - 2}}$ if N ≥ 3. Assuming that the potential a(x) is a positive function belonging to $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}L_{{\rm loc}}^{N/2} ({\R}^N )$ such that a(x) → a > 0 as |x|→∞ and satisfies slow decay assumptions but does not need to fulfill any symmetry property, the existence of infinitely many positive solutions, by purely variational methods, is proved. The shape of the solutions is described as is, and furthermore, their asymptotic behavior when $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}|a(x) - a_\infty |_{L_{{\rm loc}}^{N/2} ({\R}^N )} \to 0$ . © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The semiclassical (zero‐dispersion) limit of solutions $q=q(x,t,\epsilon)$ to the one‐dimensional focusing nonlinear Schrödinger equation (NLS) is studied in a scaling neighborhood D of a point of gradient catastrophe ($x_0,t_0$) . We consider a class of solutions, specified in the text, that decay as $|x| \rightarrow \infty$ . The neighborhood D contains the region of modulated plane wave (with rapid phase oscillations), as well as the region of fast‐amplitude oscillations (spikes). In this paper we establish the following universal behaviors of the NLS solutions q near the point of gradient catastrophe: (i) each spike has height $3|q{_0}(x_0,t_0)|$ and uniform shape of the rational breather solution to the NLS, scaled to the size ${\cal O}(\epsilon)$ ; (ii) the location of the spikes is determined by the poles of the tritronquée solution of the Painlevé I (P1) equation through an explicit map between D and a region of the Painlevé independent variable; (iii) if $(x,t)\in D$ but lies away from the spikes, the asymptotics of the NLS solution $q(x,t, \epsilon)$ is given by the plane wave approximation $q_0(x,t, \epsilon)$ , with the correction term being expressed in terms of the tritronquée solution of P1. The relation with the conjecture of Dubrovin, Grava, and Klein about the behavior of solutions to the focusing NLS near a point of gradient catastrophe is discussed. We conjecture that the P1 hierarchy occurs at higher degenerate catastrophe points and that the amplitudes of the spikes are odd multiples of the amplitude at the corresponding catastrophe point. Our technique is based on the nonlinear steepest‐descent method for matrix Riemann‐Hilbert problems and discrete Schlesinger isomonodromic transformations. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
In this paper we prove the following theorem: Suppose that n≥3 and 1≤jn $$(\forall a,b) d(a,b) : = \sum\limits_{\nu = 1}^j { (a_\nu - b_\nu )^2 - \sum\limits_{\nu = j + 1}^n { (a_\nu - b_\nu )^2 .} }$$ If a function f:?n→?n satisfies the condition: (*) $$(\forall x,y \in \mathbb{R}^n ) d(f(x),f(y)) = 0 \Leftrightarrow d(x,y) = 0,$$ then f is affine. Moreover, f preserves distances up to a constant factor C≠0, i.e. d(f(x),f(y))=C·d(x,y) for every x,y. In contrast to Alexandrov's result [1] we do not assume that f is bijective, and we also do not assume that j=n?1. A very important part of our proof will be the discussion of a functional equation.  相似文献   

8.
In the paper Brillouët-Belluot and Ebanks (Aequationes Math 60:233–242, 2000), the authors found all continuous functions f: [0, 1] → [0, + ) which verify f(0) = f(1) = 0 and the functional equation $$f(xy +c f(x) f(y)) = x f(y) + y f(x) +d \, f(x) f(y)$$ where c and d are given real numbers with c ≠ 0. In the present paper we obtain all continuous solutions ${f: \mathbb{R} \rightarrow \mathbb{R}}$ of the functional equation (1).  相似文献   

9.
We develop a theory of existence and uniqueness for the following porous medium equation with fractional diffusion: \input amssym $$\left\{ {\matrix{ {{{\partial u} \over {\partial t}} + \left( { ‐ \Delta } \right)^{\sigma /2} \left( {\left| u \right|^{m ‐ 1} u} \right) = 0,} \hfill & {x \in {\Bbb R} ^N ,\,\,t > 0,} \hfill \cr {u\left( {x,0} \right) = f\left( x \right),} \hfill & {x \in {\Bbb R} ^N .} \hfill \cr } } \right.$$ We consider data \input amssym $f\in L^1(\Bbb{R}^N)$ and all exponents $0<\sigma<2\;and\;m>0$ . Existence and uniqueness of a strong solution is established for $ m > {m_\ast}={(N-\sigma)_+}/N$ , giving rise to an L1‐contraction semigroup. In addition, we obtain the main qualitative properties of these solutions. In the lower range ${0 < m} \le {m_\ast}$ existence and uniqueness happen under some restrictions, and the properties of the solutions are different from the ones for the case above m*. We also study the dependence of solutions on f, m, and σ. Moreover, we consider the above questions for the problem posed in a bounded domain. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
We consider the equation ℝ, where , for ℝ, (ℝ), (ℝ), (ℝ), (ℝ) := C(ℝ)). We give necessary and sufficient conditions under which, regardless of , the following statements hold simultaneously: I) For any (ℝ) Equation (0.1) has a unique solution (ℝ) where $\int ^{\infty}_{-\infty}$ ℝ. II) The operator (ℝ) → (ℝ) is compact. Here is the Green function corresponding to (0.1). This result is applied to study some properties of the spectrum of the Sturm–Liouville operator.  相似文献   

11.
Let x? be a computed solution to a linear system Ax=b with , where is a proper subclass of matrices in . A structured backward error (SBE) of x? is defined by a measure of the minimal perturbations and such that (1) and that the SBE can be used to distinguish the structured backward stability of the computed solution x?. For simplicity, we may define a partial SBE of x? by a measure of the minimal perturbation such that (2) Can one use the partial SBE to distinguish the structured backward stability of x?? In this note we show that the partial SBE may be much larger than the SBE for certain structured linear systems such as symmetric Toeplitz systems, KKT systems, and dual Vandermonde systems. Besides, certain backward errors for linear least squares are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
We study the cover time of random geometric graphs. Let $I(d)=[0,1]^{d}$ denote the unit torus in d dimensions. Let $D(x,r)$ denote the ball (disc) of radius r. Let $\Upsilon_d$ be the volume of the unit ball $D(0,1)$ in d dimensions. A random geometric graph $G=G(d,r,n)$ in d dimensions is defined as follows: Sample n points V independently and uniformly at random from $I(d)$ . For each point x draw a ball $D(x,r)$ of radius r about x. The vertex set $V(G)=V$ and the edge set $E(G)=\{\{v,w\}: w\ne v,\,w\in D(v,r)\}$ . Let $G(d,r,n),\,d\geq 3$ be a random geometric graph. Let $C_G$ denote the cover time of a simple random walk on G. Let $c>1$ be constant, and let $r=(c\log n/(\Upsilon_dn))^{1/d}$ . Then whp the cover time satisfies © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 38, 324–349, 2011  相似文献   

13.
We consider the following nonlinear system derived from the SU(3) Chern‐Simons models on a torus Ω: where $\delta_p$ denotes the Dirac measure at $p\in\Omega$ . When $\{p_j^1\}_1^{N_1}= \{p_j^2\}_1^{N_2}$ , if we look for a solution with $u_1=u_2=u$ , then (0.1) is reduced to the Chern‐Simons‐Higgs equation: The existence of bubbling solutions to (0.1) has been a longstanding problem. In this paper, we prove the existence of such solutions such that $u_1\ne u_2$ even if $\{p_j^1\}_1^{N_1}=\{p_j^2\}_1^{N_2}$ . © 2012 Wiley Periodicals, Inc.  相似文献   

14.
We consider the special Jin‐Xin relaxation model We assume that the initial data ( ) are sufficiently smooth and close to ( ) in L and have small total variation. Then we prove that there exists a solution ( ) with uniformly small total variation for all t ≥ 0, and this solution depends Lipschitz‐continuously in the L1 norm with respect to time and the initial data. Letting , the solution converges to a unique limit, providing a relaxation limit solution to the quasi‐linear, nonconservative system These limit solutions generate a Lipschitz semigroup on a domain containing the functions with small total variation and close to . This is precisely the Riemann semigroup determined by the unique Riemann solver compatible with (0.1). © 2005 Wiley Periodicals, Inc.  相似文献   

15.
We prove the uniqueness of weak solutions of the 3‐D time‐dependent Ginzburg‐Landau equations for super‐conductivity with initial data (ψ0, A0)∈ L2 under the hypothesis that (ψ, A) ∈ Ls(0, T; Lr,∞) × (0, T; with Coulomb gauge for any (r, s) and satisfying + = 1, + = 1, ≥ , ≥ and 3 < r ≤ 6, 3 < ≤ ∞. Here Lr,∞ ≡ is the Lorentz space. As an application, we prove a uniqueness result with periodic boundary condition when ψ0 ∈ , A0L3 (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We show that any nondegenerate vector field u in \begin{align*}L^{\infty}(\Omega, \mathbb{R}^N)\end{align*}, where Ω is a bounded domain in \begin{align*}\mathbb{R}^N\end{align*}, can be written as \begin{align*}u(x)= \nabla_1 H(S(x), x)\quad {\text for a.e.\ x \in \Omega}\end{align*}}, where S is a measure‐preserving point transformation on Ω such that \begin{align*}S^2=I\end{align*} a.e. (an involution), and \begin{align*}H: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}\end{align*} is a globally Lipschitz antisymmetric convex‐concave Hamiltonian. Moreover, u is a monotone map if and only if S can be taken to be the identity, which suggests that our result is a self‐dual version of Brenier's polar decomposition for the vector field as \begin{align*}u(x)=\nabla \phi (S(x))\end{align*}, where ? is convex and S is a measure‐preserving transformation. We also describe how our polar decomposition can be reformulated as a (self‐dual) mass transport problem. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Let be bounded Lipschitz and relatively open. We show that the solution to the linear first order system 1 : (1) vanishes if and , (e.g. ). We prove to be a norm if with , for some p, q > 1 with 1/p + 1/q = 1 and . We give a new proof for the so called ‘in-finitesimal rigid displacement lemma’ in curvilinear coordinates: Let , satisfy for some with . Then there are and a constant skew-symmetric matrix , such that . (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.

In this paper we study the solutions of the integral Van Vleck’s functional equation for the sine

$$\begin{aligned} \int _{S}f(x\tau (y)t)d\mu (t)-\int _{S}f(xyt)d\mu (t) =2f(x)f(y),\; x,y\in S \end{aligned}$$

and the integral Kannappan’s functional equation

$$\begin{aligned} \int _{S}f(xyt)d\mu (t)+\int _{S}f(x\tau (y)t)d\mu (t) =2f(x)f(y),\; x,y\in S, \end{aligned}$$

where S is a semigroup, \(\tau \) is an involution of S and \(\mu \) is a measure that is a linear combination of Dirac measures \((\delta _{z_{i}})_{i\in I}\), such that for all \(i\in I\), \(z_{i}\) is contained in the center of S. We express the solutions of the first equation by means of multiplicative functions on S, and we prove that the solutions of the second equation are closely related to the solutions of d’Alembert’s classic functional equation with involution.

  相似文献   

19.
We study the Cauchy problem for non‐linear dissipative evolution equations (1) where ?? is the linear pseudodifferential operator and the non‐linearity is a quadratic pseudodifferential operator (2) û ≡ ?x→ξ u is the Fourier transformation. We consider non‐convective type non‐linearity, that is we suppose that a(t,0,y) ≠ 0. Let the initial data , are sufficiently small and have a non‐zero total mass , where is the weighted Sobolev space. Then we give the main term of the large time asymptotics of solutions in the sub critical case. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Let us consider the boundary‐value problem where g: ? → ? is a continuous and T ‐periodic function with zero mean value, not identically zero, (λ, a) ∈ ?2 and ∈ C [0, π ] with ∫π 0 (x) sin x dx = 0. If λ 1 denotes the first eigenvalue of the associated eigenvalue problem, we prove that if (λ, a) → (λ 1, 0), then the number of solutions increases to infinity. The proof combines Liapunov–Schmidt reduction together with a careful analysis of the oscillatory behavior of the bifurcation equation. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号