首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron field-emission measurements on individual carbon nanotubes (CNTs) were performed inside the transmission electron microscope (TEM). The field-emission characteristics of CNTs with different tip structures were compared, and their field conversion factor and emission area were studied systematically. It was found that the field-emission characteristics of a CNT depend sensitively on its tip structure, and in particular an opened CNT was shown to be superior to a capped CNT. High-resolution TEM observations revealed that the tip of an opened CNT may, in general, be regarded as being composed of irregular shaped graphitic sheets, and these graphitic sheets have been found to improve dramatically the field-emission characteristics, but the sharp edge may result in larger error in the calculated emission area. The influence of uncertainty in the work function of the CNTs on the field conversion factor and emission area calculation was also investigated.  相似文献   

2.
The electronic structure of multiwalled carbon nanotubes (CNTs) has been investigated, depending on the growth temperature, using synchrotron X-ray photoelectron spectroscopy (XPS) and field emission measurements. The vertically aligned CNTs are grown via pyrolysis of ferrocene and acetylene in a broad temperature range 600-1000 degrees C. The CNTs have a cylindrical structure with a uniform diameter of 20 nm. As growth temperature increases, due to an improved crystallinity of the graphitic sheets, the width of the XPS C 1s peak becomes narrower and the intensity of the valence band increases. Field emission from the as-grown CNTs exhibits a large enhancement of current density with growth temperature, strongly correlated with the electronic structure revealed by XPS.  相似文献   

3.
Tungsten single atom tips have been prepared from a single crystal W(111) oriented wire using the chemical assisted field evaporation and etching method. Etching to a single atom tip occurs through a symmetric structure and leads to a predictable last atom unlike etching with polycrystalline tips. The single atom tip formation procedure is shown in an atom by atom removal process. Rebuilds of single atom tips occur on the same crystalline axis as the original tip such that ion emission emanates along a fixed direction for all tip rebuilds. This preparation method could be utilized and developed to prepare single atom tips for ion source development.  相似文献   

4.
We observed field emission microscopy (FEM) patterns of noble‐metal (NM) covered W nano‐tips with three different apex structures fabricated by field evaporation. Each of the three tips was terminated with a single atom, three atoms or ten atoms. We investigated the temporal changes in the FEM of these tips to discuss the stabilities in the spatial distributions of the field emission (FE) beams. The single‐atom tip showed two characteristics that were superior to the others. First, the beams emitted from the single‐atom tip were the most collimated among the three tips (the semi‐cone angle of 1.0° , FWHM). Second, adsorption of residual gas had little influence on FE from the single‐atom tip, while the other tips were easily contaminated even at ultra high vacuum, resulting in the emission fluctuation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Electrically insulated carbon nanotube (CNT) based separation columns have been fabricated that can withstand an electrical field strength of more than 2.0 kV cm(-1) without bubble formation from electrolysis. The carbon nanotubes were grown in a pillar array defined by photolithographic patterning of the catalyst layer used for synthesis of the nanotubes. Multiwall carbon nanotubes are inherently electrically conductive and cannot be used as a continuous layer in the microfluidic channels, without short circuiting the electrical field in the separation column, when the field strength is more than a couple of 100 V cm(-1). Here, the carbon nanotubes are grown in an array of hexagonal pillars, where the nanotubes in the individual pillars are not in direct electrical contact with the nanotubes of the adjacent pillars. This makes it possible to increase the electrical field strength from around 100 V cm(-1) to more than 2.0 kV cm(-1) and thereby to use the CNT columns for electrokinetic separations with the high electrical field strengths that are typically used in this application. An electrochromatographic separation of two Coumarin dyes was demonstrated on the CNT column with an acetonitrile content of 90%.  相似文献   

6.
A new model is proposed for the encapsulation of catalyst metal particles by graphite layers that are obtained, for example, in low-temperature chemical vapor deposition production of carbon nanotubes (CNTs). In this model graphite layers are primarily formed from the dissolved carbon atoms in the metal-carbide particle when the particle cools. This mechanism is in good agreement with molecular dynamics simulations (which show that precipitated carbon atoms preferentially form graphite sheets instead of CNTs at low temperatures) and experimental results (e.g., encapsulated metal particles are found in low-temperature zones and CNTs in high-temperature regions of production apparatus, very small catalyst particles are generally not encapsulated, and the ratio of the number of graphitic layers to the diameter of the catalyst particle is typically 0.25 nm(-1)).  相似文献   

7.
Evaporation of aqueous droplets of carbon nanotubes (CNTs) coated with a physisorbed layer of humic acid (HA) on a partially hydrophilic substrate induces the formation of a film of CNTs. Here, we investigate the role that the global geometry of the substrate surfaces has on the structure of the CNT film. On a flat mica or silica surface, the evaporation of a convex droplet of the CNT dispersion induces the well-known "coffee ring", while evaporation of a concave droplet (capillary meniscus) of the CNT dispersion in a wedge of two planar mica sheets or between two crossed-cylinder sheets induces a large area (>mm(2)) of textured or patterned films characterized by different short- and long-range orientational and positional ordering of the CNTs. The resulting patterns appear to be determined by two competing or cooperative sedimentation mechanisms: (1) capillary forces between CNTs giving micrometer-sized filaments parallel to the boundary line of the evaporating droplet and (2) fingering instability at the boundary line of the evaporating droplet and subsequent pinning of CNTs on the surface giving micrometer-sized filaments of CNTs perpendicular to this boundary line. The interplay between substrate surface geometry and sedimentation mechanisms gives an extra control parameter for manipulating patterns of self-assembling nanoparticles at substrate surfaces.  相似文献   

8.
铬酸及硝酸混合液处理以增强碳纳米管场发射   总被引:1,自引:0,他引:1  
为了修饰碳纳米管(CNTs)的表面型态及改变碳纳米管的表面结构, 进一步增强碳纳米管的场发射特性, 使用铬酸及硝酸的混合溶液对碳纳米管进行后处理. 采用SEM、TEM、Raman 和EDS测试手段对样品的形貌、表面成份组成和微观结构特征进行了表征. 场发射(FE)的数据显示, 经过铬酸及硝酸的混合溶液处理20 min的碳纳米管场发射电流比未经任何处理的碳纳米管场发射电流明显增加一个数量级以上, 场发射电流增强的主要原因为样品上的碳纳米管的表面型态的改变, 造成碳纳米管场发射增强因子茁的增大. 与单独使用硝酸溶液后处理比较, 使用铬酸及硝酸的混合溶液对碳纳米管进行后处理可以得到较高的场发射电流及较低的起始电场. 铬酸及硝酸的混合溶液处理方法能经济且有效增强碳纳米管的场发射特性.  相似文献   

9.
The energetics, interfacial properties, instabilities, and fragmentation patterns of electrosprays made from formamide salt solutions are investigated in a mass spectrometric vacuum electrospray experiment and using molecular dynamics (MD) simulations. The electrospray source is operated in a Taylor cone-jet mode, with the nanojet that forms being characterized by high surface-normal electric field strengths in the vicinity of 1 V/nm. Mass-to-charge ratios were determined for both positive and negative currents sprayed from NaI-formamide solutions with solute-solvent mole ratios of 1:8.4 and 1:36.9, and from KI-formamide solutions with mole ratios of 1:41 and 1:83. The molecular dynamics simulations were conducted on isolated 10 nm NaI-formamide droplets at mole ratios of 1:8 and 1:16. The droplet was subjected to a uniform electric field with strengths ranging between 0.5 and 1.5 V/nm. Both the experiments and simulations demonstrate a mixed charge emission regime where field-induced desorption of solvated ions and charged droplets occurs. The macroscopic parameters, such as average mass-to-charge ratio and maximum surface-normal field strengths deduced from the simulations are found to be in good agreement with the experimental work and consistent with electrohydrodynamic theory of cone-jets. The observed mass spectrometric Na (+) and I (-) solvated ion distributions are consistent with a thermal evaporation process, and are correctly reproduced by the simulation after incorporation of the different flight times and unimolecular ion dissociation rates in the analysis. Alignment of formamide dipoles and field-induced reorganization of the positive and negative ionic charges in the interfacial region are both found to contribute to the surface-normal field near the points of charge emission. In the simulations the majority of cluster ions are found to be emitted from the tip of the jet rather than from the neck region next to the Taylor cone. This finding is consistent with the experimental energy distributions of the solvated ions which demonstrate that indeed most ions are emitted closer to the jet region, that is, beyond the cone-neck region where ohmic losses occur. This observation is also consistent with continuum electrohydrodynamic predictions of cluster-ion evaporation at surface regions of high curvature and therefore maximum surface electric field strengths, which may be the cone-neck region, the breakup region of the jet (usually near the tip of the jet), or the emitted charged droplets. In the nanoscale jets observed in this study, the regions of highest spatial curvature are at the ends of the jets where nascent drops either are forming or have just detached.  相似文献   

10.
Due to the widespread application of carbon nanotube (CNT)‐based materials in nanomedicine, it is nowadays of paramount importance to unravel at the atomistic level of detail the structural properties of such bioconjugates in order to rationalize and predict the effect exerted by the graphitic framework on the bio‐active counterpart. In this paper, we report for the first time all‐atom explicit solvent molecular dynamics (MD) simulations investigating the structural and dynamic properties of a noncovalent bioconjugate in which the monoclonal Cetuximab antibody (Ctx) is adsorbed on a CNT surface. Upon selection of the three most representative adsorption modes as obtained by docking studies, force‐field MD and DFT simulations unambiguously showed that hydrophobic interactions mainly govern the adsorption of the protein on the graphitic surface. Two main adsorption poses have been predicted: a pose‐fab (p‐fab) and pose‐fc (p‐fc) (fab = fragment antigen binding region; fc = fragment crystallizable region), the former being favored with small‐diameter tubes (≤40 Å). In all the predicted poses, the secondary structure of Ctx is largely unaffected by the presence of the graphitic surface and, consistently with previous literature studies, our simulations reveal that positively charged amino acidic residues, such as Lys and Arg, predominantly contribute to the stabilization of the CNT?Ctx complex acting like surfactants. The predicted structural models are consistent with the experimental data, for which the immobilization of the antibody on CNTs does not disrupt the structural and recognition properties of the Ctx, consequently supporting the reliability of the used bioconjugation strategy for engineering stable and responsive hybrid nanomaterials for therapeutic applications. Moreover, a remarkable structural similarity of Ctx with antibodies of different isotypes suggests that in principle the CNT framework can interact in the same manner with all antibodies currently used in clinical applications.  相似文献   

11.
This paper describes the process of manufacturing a new nanocomposite material, which involves adding a carbon nanotube (CNT) to improve EVA's physical characteristics such as weak radiation resistance and thermal properties. We irradiated the prepared samples with doses of 50 kGy, 100 kGy and 200 kGy at a dose rate of 5 kGy/h and examined their thermogravimetric characteristics, activation energy, degradation progress, and CNT dispersion using a thermogravimetric analyzer (TGA), chemiluminescence (CL), and a field emission scanning electron microscope (FESEM). Experimental results indicated that the samples with a CNT had higher DTG 2nd peak temperatures than those without a CNT. Activation energy of the samples reduced as the irradiation dose and the CNT content increased. In the second CL experiment, the CL intensity rapidly declined as the temperature, irradiation dose and the CNT content increased. Finally, examination of the fracture surfaces in the FESEM experiment indicated that the lamella structure of the EVA changed as the irradiation dose increased. We were also able to observe that samples with a CNT were aggregated and dispersed in numerous lumps.  相似文献   

12.
A saddle‐shaped macromolecule has been synthesized. The molecule was designed as a geodesic saddle with 1,3,5‐trisubstituted benzene (named phenine) as the fundamental unit. The phenines were woven into a polygonal framework that was composed of 168 sp2‐hybridized carbon atoms. The saddle‐shaped structure with unique symmetry showed atypical conformational changes. The biaryl linkages in this molecule had a small energy barrier for rotation, and these structural fluctuations resulted in seven 1H NMR resonances representing 84 aromatic hydrogen atoms. Nevertheless, the overall saddle shape of the molecule was persistent, and the “up” and “down” orientations of phenine moieties circulated to give average 1H resonances. The structural characteristics of this molecule, including the anomalous entropy‐driven dimerization, may deepen our understanding of defect‐rich graphitic sheets.  相似文献   

13.
Carbon nanofibers are grown homogeneously on a large area of nickel-deposited sodalime glass substrate by thermal chemical vapor deposition of acetylene at 500°C. The diameters of carbon nanofibers are uniformly distributed in the range between 50 and 60 nm. Most of the carbon nanofibers are curved or bent in shape, but some fractions are twisted. They consist of defective graphitic sheets with a herringbone morphology. The maximum emission current density from the carbon nanofibers is 0.075 mA/cm2 at 16 V/μm, which is sufficient for commercializing the carbon-nanofibers-based field emission displays.  相似文献   

14.
Carbon nanotubes (CNTs) were directly synthesized on flexible polymer substrates without damage of polymer by microwave irradiation. Cobalt was used as the catalysts, and the synthesis was done in the atmospheric pressure with an acetylene carbon source. Only 5 s was required for the synthesis of well-graphitized CNTs. Field emission measurements revealed that this flexible CNT field emitter array has a great potential for the flexible field emission displays (FEDs).  相似文献   

15.
A simple acid treatment method was applied to functionalize the surface and to modify the structures of multi-walled carbon nanotubes (CNTs) grown on silicon substrates using a mixed solution of chromic trioxide (CrO3) and nitric acid (HNO3). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and energy dispersive spectrometer (EDS) were employed to investigate the mechanism causing the modified field emission (FE) properties of the CNT films. After 20 min of CrO3+HNO3 treatment, the emitted currents were enhanced by more than one order of magnitude compared with those of the untreated CNTs. This large increase in emitted current can be attributed to the favorable surface morphologies, open-ended structures, and highly curved CNT surfaces in the CNT films. These factors altogether caused an increase in the field enhancement factors of CNTs. We also demonstrated that using a mixed solution of CrO3+HNO3 post-treatment exhibited a higher emission current and a lower turn-on electric field than in the CNTs treated with HNO3. The method provides a simple, economical, and effective way to enhance the CNT field emission properties.  相似文献   

16.
In this report we present a straightforward new technique for fabricating nanotips. This approach is based on spatially controlling the reaction of nitrogen gas with the surface atoms of a tungsten tip in a field ion microscope (FIM). Confining this field-assisted etching reaction to the shank has enabled us to produce single-atom tips with an apex radius far sharper than the nominal 10 nm radius of curvature tips we start with. Tip sharpening is evidenced in several ways. The FIM imaging voltage drops dramatically from, typically, 4.4 to 1.6 kV. Nanotip formation is also evident from the increase in the FIM magnification and the decrease in the apex area, which are monitored throughout the experiment. A subsequent field evaporation allows the nanotip to be sequentially deconstructed to further describe the extraordinary sharp tip that was formed. We also demonstrate the utility of these nanotips for the scanning tunneling microscope.  相似文献   

17.
The catalytic CVD synthesis, using propyne as carbon precursor and Fe(NO3)3 as catalyst precursor inside porous alumina, gives carbon nanotube (CNT) bags in a well-arranged two-dimensional order. The tubes have the morphology of bags or fibers, since they are completely filled with smaller helicoidal CNTs. This morphology has so far not been reported for CNTs. Owing to the dense filling of the outer mother CNTs with small helicoidal CNTs, the resulting CNT fibers appear to be stiff and show no sign of inflation, as sometimes observed with hollow CNTs. The fiber morphology was observed by raster electron microscopy (REM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The carbon material is graphitic as deduced from spectroscopic studies (X-ray diffraction, Raman and electron energy-loss spectroscopy (EELS)). From M?ssbauer studies, the presence of two different oxidation states (Fe0 and FeIII) of the catalyst is proven. Geometric structuring of the template by two different methods has been studied. Inkjet catalyst printing shows that the tubes can be arranged in defined areas by a simple and easily applied technique. Laser-structuring creates grooves of nanotube fibers embedded in the alumina host. This allows the formation of defined architectures in the microm range. Results on hydrogen absorption and field emission properties of the CNT fibers are reported.  相似文献   

18.
Flexible thin films of metal–carbon nanotube (CNT) with densely populated CNT morphology were fabricated by electrodeposition from an optimized copper bath. The substrate used for the present work is polyethylene film that was pre-deposited with electroless copper as a seed layer before CNT deposition. Optimum concentration of CNT was incorporated into copper bath and the electrodeposition was done at quiescent and agitation conditions. The bonding between the seed layer and the electrodeposited copper was good as revealed from adhesion test. Electrical as well as physical-mechanical property of the film was improved by CNT incorporation within the metal matrix. The topography and the texture of the metal–CNT deposit showed a well-refined structure as per scanning electron microscope (SEM), field emission scanning electron microscope (FE-SEM), and scanning probe microscope (SPM) analysis. The stability of the film was tested by cyclic voltammetric and stripping analysis under various applied conditions. Raman spectra and Fourier transfer infrared spectroscopic (FT-IR) analysis revealed the presence of CNT and the functionality of CNT within the copper matrix. Transmission electron microscope (TEM) analysis showed nucleation of copper on the surface of CNT walls.  相似文献   

19.
结合紫外光电子能谱和拉曼光谱对溶液法制备的碳纳米管薄膜的场致电子发射性能进行研究。采用溶液滴涂法制备的碳纳米管薄膜的场致电子发射开启电场约为3.33 MV/m,阈值电场约为5.44 MV/m,以福勒-诺得海姆(Fowler-Nordheim,FN)理论对电子发射进行解释,其发射的增强因子接近103。通过对紫外光电子能谱的分析,发现碳纳米管薄膜的低能量截止端在外加电场作用下逐步降低,表明纳米管薄膜的表面有效势垒在外加电场作用下逐步下降,从而使得碳纳米管薄膜的电子更加容易发射进入真空。结合拉曼光谱和电学特性的研究,发现界面过渡层的接触电阻与碳纳米管薄膜中的非晶碳成分均可以增强场致电子发射。  相似文献   

20.
运用自制的碳纳米管原子力显微镜针尖,在液体中观察了脱氧核糖核酸(DNA)分子的精细结构。结果表明,运用碳纳米管针尖获得的DNA分子的高度与电子显微镜的结果非常接近,且没有造成样品的变形损伤;碳纳米管针尖得到的DNA分子的宽度与真实值相近,减小了原子力显微镜成像的增宽效应,这是用传统的硅针尖无法获得的。DNA分子精细结构的高分辨率图像的获得为研究其功能提供了有价值的信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号