首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Composite membranes prepared from poly(vinyl alcohol) and poly(sulfone) were crosslinked with trimesoyl chloride (TMC) solutions. The degree of crosslinking, crystallinity, surface roughness and hydrophobicity of the crosslinked PVA–PSf membranes were determined from attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM) and contact angle measurements, respectively. Results showed a consistent trend of changes in the physicochemical properties: the degree of crosslinking, crystallinity, surface roughness, hydrophobicity and swelling degree all decrease with increasing crosslinking agent (TMC) concentration and reaction time. The crosslinked membrane performance was assessed with pervaporation dehydration of ethylene glycol solutions at a range of concentrations (30–90 wt% EG) in the feed mixtures. The total flux of permeation was found to decrease, while the selectivity to increase, with increasing TMC concentration and reaction time. The decrease in flux was most prominent at low EG concentrations in the feed mixtures. In addition, the temperature effect on the pervaporation dehydration was investigated in relation to solution–diffusion mechanisms.  相似文献   

2.
Calcium alginate-chitosan (CA/CS) blended membranes were prepared and crosslinked with maleic anhydride (MA) for the pervaporation (PV) separation of ethylene glycol (EG)/water mixtures at 30°C. The structure and properties of blend membranes were studied with the aid of FTIR, XRD, TGA, and SEM. The effect of experimental parameters such as feed composition, membrane thickness, and permeate pressure on separation performance of the MA crosslinked membranes were determined in terms of flux, selectivity, and pervaporation separation index. Sorption studies were carried out to evaluate the extent of interaction and degree of swelling of the blend membranes in pure, as well as in binary mixtures. The experimental results suggested that the crosslinked membrane (M-CA/CS) exhibited a good selectivity of 302 at a normalized flux of 0.38 kg.m? 2.h? 1.10 μ m at 30°C for 96.88 wt% EG aqueous solution.  相似文献   

3.
Poly(vinyl alcohol) (PVA) was blended with soluble polyelectrolyte complex (PEC) made from poly(diallyldimethylammonium chloride) (PDDA) and sodium carboxymethyl cellulose (CMCNa). Crystallinity, thermal transition, and thermal stability of the PVA/PEC blends were characterized by using wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and thermal gravity analysis (TGA), respectively. Surface morphology, cross-section and phase structure of the blend membranes were examined by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Surface hydrophilicity and swelling behavior of the blend membranes were examined by water contact angle (CA) and swelling tests. Blend membranes were subjected to isopropanol dehydration, and effects of blend composition, feed composition and feed temperature on pervaporation performance are discussed in terms of phase structures of blend membranes. A performance of J = 1.35 kg/m2 h, α = 1002, was obtained for blend membrane containing 50 wt% PEC in dehydrating 10 wt% water–isopropanol at 70 °C.  相似文献   

4.
Sulfonated cardo polyetherketone (SPEK-C) and poly(vinyl alcohol) (PVA) blend membranes were prepared by solution casting method and used in pervaporation (PV) dehydration of acetic acid. The membranes were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and contact angle meter. The results show that thermal crosslinking occurred to the membrane under high temperature annealing. The effective d-spacing (inter-segmental spacing) decreased with PVA content decreasing. The hydrophilicity of the blend membrane increased with SPEK-C content increasing. Swelling and sorption experiments show that the swelling degree of the blend membrane increased, however both the sorption and diffusion selectivities decreased with increasing PVA content. The diffusion selectivity is higher than the sorption selectivity. This suggests that PV dehydration of acetic acid is dominated by the diffusion process. The pervaporation separation index (PSI) of the membrane increases with increasing PVA content and arrives at a maximum when the SPEK-C/PVA ratio is 3/2, then decreases with further addition of PVA. The membrane has an encouraging separation performance with a flux of 492 g m−2 h−1 and separation factor of 59.3 at 50 °C at the feed water content 10 wt%.  相似文献   

5.
This study describes the facile preparation of poly(vinyl alcohol) (PVA)/polyethersulfone (PES) composite membranes by interfacial reaction technique, aiming at acquiring the improved structural and operational stability of the resulting membranes. The effect of interfacial crosslinking agent and hydrophilicity of support layer on the interfacial adhesive strength and pervaporation performance of composite membranes were investigated. The optimal recipe for PVA/PES composite membrane preparation was as follows: PES support layer was treated with 0.1 wt.% borax aqueous solution, fully dried and then immersed into 2 wt.% PVA aqueous solution. The resulting PVA active layer was 1–1.5 μm thick after twice dip-coating. The as-prepared PVA/PES composite membrane exhibited high separation factor of over 438, high permeation flux of 427 g m−2 h−1 for 80 wt.% EG in the feed at 70 °C and desirable structural stability. It could be derived that adoption of interfacial reaction would be an effective method for preparing the composite membranes suitable for large-scale dehydration of ethylene glycol/water mixture.  相似文献   

6.
Poly(vinyl alcohol) (PVA) membranes crosslinked with glutaraldehyde (GA) were prepared by a solution method for the pervaporation separation of acetic acid-water mixtures. In the solution method, dry PVA films were crosslinked by immersion for 2 days at 40°C in reaction solutions which contained different contents of GA, acetone and a catalyst, HCl. In order to fabricate the crosslinked PVA membranes which were stable in aqueous solutions, acetone was used as reaction medium in stead of aqueous inorganic salt solutions which have been commonly used in reaction solution for PVA crosslinking reaction. The crosslinking reaction between the hydroxyl group of PVA and the aldehyde group of GA was characterized by IR spectroscopy. Swelling measurements were carried out in both water and acetic acid to investigate the swelling behavior of the membranes. The swelling behaviour of a membrane fabricated at different GA content in a reaction solution was dependent on crosslinking density and chemical functional groups created as a result of the reaction between PVA and GA, such as the acetal group, ether linkage and unreacted pendent aldehydes in PVA. The pervaporation separation of acetic acid-water mixtures was performed over a range of 70–90 wt% acetic acid in the feed at temperatures varying from 35 to 50°C to examine the separation performances of the PVA membranes. Permeation behaviour through the membranes was analyzed by using pervaporation activation energies which had been calculated from the Arrhenius plots of permeation rates.  相似文献   

7.
Electrophoretic deposition (EPD) method has been developed for the fabrication of hydroxyapatite (HA)–CaSiO3 (CS)–chitosan composite coatings for biomedical applications. The use of chitosan enabled the co-deposition of HA and CS particles and offered the advantage of room temperature processing of composite materials. The coating composition was varied by the variation of HA and CS concentrations in the chitosan solutions. Cathodic deposits were obtained as HA–CS–chitosan monolayers, HA–chitosan/chitosan multilayers or functionally graded materials (FGM) containing HA–chitosan and CS–chitosan layers of different composition. The thickness of the individual layers was varied in the range of 0.1–20 μm. The deposition yield was studied at different experimental conditions and compared with the results of modeling. It was shown that the moving boundary model for the two component system can explain the non-linear increase in the deposition yield with increasing HA concentration in chitosan solutions. The obtained coatings were studied by thermogravimetric analysis (TGA), differential thermal analysis (DTA) and scanning electron microscopy (SEM). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies showed that these coatings provided corrosion protection of stainless steel substrates in Ringer's physiological solution. The deposition mechanism and kinetics of deposition have been discussed.  相似文献   

8.
《先进技术聚合物》2018,29(1):84-94
In the present study, novel biodegradable nanocomposite membranes were prepared by adding the amino functionalized multiwalled carbon nanotube (NH2‐MWCNT) to the chitosan/polyvinyl alcohol blend polymers, and the obtained membranes were used for dehydration of isopropyl alcohol through pervaporation process. For this purpose, the membranes were prepared with chitosan/polyvinyl alcohol ratio of 4:1 on the basis of “solution casting” method and then crosslinked using glutaraldehyde, after addition of different amounts of NH2‐MWCNT. The prepared membranes were characterized using scanning electron microscopy, contact angle, mechanical strength, degree of swelling (DS), and biodegradability. Also, the ability of the prepared membranes in dehydration of isopropyl alcohol was determined using pervaporation experiments. Results indicated that contact angle, mechanical resistance, separation factor (α), and pervaporation separation index were increased with the addition of NH2‐MWCNT up to 10 wt% (relative to the total amount of polymer) and then decreased in the higher presence of nanotubes (15 wt%). Furthermore, the DS and permeate flux were first decreased and then increased for the same mentioned amounts of additive. In this study, optimized membrane was obtained by the addition of 10 wt% NH2‐MWCNT. This membrane showed the maximum α (99.5), pervaporation separation index parameter (78.29 kg m−2 h−1), biodegradability, and mechanical stability as well as minimum DS.  相似文献   

9.
Effect of chemical structures of amines on the performance of isopropanol dehydration by pervaporation through the polyamide thin-film composite membranes prepared by various amines reacting with TMC on the surfaces of the modified asymmetric polyacrylonitrile (mPAN) membranes was investigated. ATR-FTIR, SEM, AFM and water contact angle were used to characterize the chemical structures, morphologies and hydrophilicity of the polyamide active layers of the composite membranes. To investigate the correlation between the free volume of polyamide active layer and pervaporation performance, the free volume variation of the polyamide active layers was probed by positron annihilation spectroscopy (PAS) experiments performed using the slow positron beam. It was found that the pervaporation performance for separating 90 wt.% aqueous isopropanol solutions at 25 °C decreased in the order of EDA–TMC/mPAN membrane > MPDA–TMC/mPAN membrane > PIP–TMC/mPAN and HDA–TMC/mPAN membranes. The relationship between the performance of isopropanol dehydration and the physicochemical properties of the polyamide layers, that is, the free volume, surface roughness and hydrophilicity seemed very well.  相似文献   

10.
PVA/PVP共混交联膜的渗透蒸发分离性质(Ⅰ)   总被引:7,自引:1,他引:6  
研究了4,4'-双叠氮芪-2,2'-二磺酸钠和戊二醛对聚乙烯吡咯烷酮(PVP)、聚乙烯醇(PVA)共混膜的交联及交联对共混膜分离恒沸点附近的乙醇/水混合物的影响.结果表明,膜的分离性质随着膜中PVP含量的增加而改变;采用混合型交联剂对PVA/PVP共混膜交联能明显改善膜的选择性.  相似文献   

11.
聚乙烯醇/纳米纤维素复合膜的渗透汽化性能及结构表征   总被引:6,自引:0,他引:6  
将聚乙烯醇/纳米纤维素(PVA/NCC)复合膜应用于乙醇-水混合溶液的渗透汽化脱水过程,探讨了纳米纤维素对膜的溶胀性能、机械性能和渗透汽化性能的影响; 利用原子力显微镜(AFM)探测了纳米纤维素的形貌特征; 采用傅里叶变换红外光谱仪(FTIR)、扫描电镜(SEM)、差示扫描量热仪(DSC)和热重分析仪(TGA)对膜结构...  相似文献   

12.
Dense membranes were prepared from poly(vinyl alcohol)–poly(N-vinyl pyrrolidone) (PVA–PVP) blends of different compositions and studied in swelling and dehydration by pervaporation of three organic solvents contaminated by 5 wt% water. The swelling generally increases with the PVP content. No extraction occurs in water–tetrahydrofuran (THF) and water–methyl ethyl ketone (MEK) mixtures. In ethanol containing 10 wt% of water, there is no extraction for blends containing less than 40 wt% PVP and an increasing extraction beyond this PVP content. The pervaporation flux of the water–ethanol mixture increases drastically at the same threshold whereas the water permselectivity falls to a low level. The values of the diffusion and permeability coefficients determined from transient permeation of the test water–ethanol mixture exhibit a similar sudden increase at the same PVP content threshold. This singular behavior of the blend membranes is interpreted by a strong affinity of the PVP component to ethanol, combined with a disappearance of crystallites in the blend at this threshold. Consequently the amorphous membrane can swell freely according to the affinity of the PVP component, leading to the observed behavior.  相似文献   

13.
Sodium alginate and hydroxyethylcellulose blend membranes were prepared by solution casting, crosslinked with glutaraldehyde and urea–formaldehyde–sulfuric acid mixture. Crosslinking was confirmed by Fourier transform infrared spectroscopy, while the blend compatibility was studied by differential scanning calorimetry and scanning electron microscopy. Membranes were tested for pervaporation separation of feed mixtures ranging from 10 to 50 mass% water in water + 1,4-dioxane and water + tetrahydrofuran mixtures at 30 °C. For 10 mass% of the feed mixture, pervaporation experiments were also carried out at higher temperatures (40 and 50 °C). By increasing the temperature, a slight increase in flux with a considerable decrease in selectivity was observed for all the membranes and for both the mixtures. The blend membranes exhibited different pervaporation performance for both the binary mixtures investigated. For water + 1,4-dioxane mixture, the pervaporation performance did not improve much after blending, whereas for water + tetrahydrofuran mixture, the pervaporation performance has improved considerably over that of plain sodium alginate membrane.  相似文献   

14.
Hybrid dual-network membranes comprising chitosan (CS)–polyvinyl alcohol (PVA) networks crosslinked with sulfosuccinic acid (SSA) and glutaraldehyde (GA) and modified with stabilized silicotungstic acid (SWA) are reported for their application in direct methanol fuel cells (DMFCs). Physico-chemical properties of these membranes are evaluated using thermo-gravimetric analysis and scanning electron microscopy in conjunction with their mechanical properties. Based on water sorption and proton conductivity measurements for the membranes, the optimum content of 10 wt.% SWA in the membrane is established. The methanol crossover for these membranes are studied by measuring the mass balance of methanol using density meter and are found to be lower compared to Nafion-117 membrane. The membrane–electrode assembly with 10 wt.% stabilized SWA–CS–PVA hybrid membrane with SSA and GA as crosslinking agent delivers a peak power density of 156 mW cm−2 at a load current density of 400 mA cm−2 and 88 mW cm−2 at a load current density of 300 mA cm−2, respectively, in DMFC at 70 °C.  相似文献   

15.
《先进技术聚合物》2018,29(9):2467-2476
Poly (caprolactone) membranes with addition of different poly (ethylene glycol) concentrations were prepared for separation of water/isopropanol azeotropic mixture by pervaporation process. Different characterization tests including Fourier transform infrared, scanning electron microscopy, water contact angle, and thermogravimetric analysis were carried out on the prepared membranes. In addition, the effect of poly (ethylene glycol) PEG content on the swelling degree and the performance of the prepared membranes in pervaporation process were investigated. According to the obtained results, all the membranes were water selective and the blend membrane containing 3 wt% PEG exhibited the best pervaporation performance with a water flux of 0.517 kg/m2 hour and separation factor of 1642 at the ambient temperature. Hydrophilicity improvement of the blend membranes was confirmed by constant decrease in water contact angle of the membranes as PEG content increased in the casting solution. Scanning electron microscopy cross‐sectional images indicated that the blend membranes containing PEG had a closed cellular structure. Furthermore, mechanical and thermal properties of the membranes decreased by adding PEG.  相似文献   

16.
Composite membranes with mordenite (MOR) incorporated in poly vinyl alcohol (PVA)–polystyrene sulfonic acid (PSSA) blend tailored with varying degree of sulfonation are reported. Such a membrane comprises a dispersed phase of mordenite and a continuous phase of the polymer that help tuning the flow of methanol and water across it. The membranes on prolonged testing in a direct methanol fuel cell (DMFC) exhibit mitigated methanol cross-over from anode to the cathode. The membranes have been tested for their sorption behaviour, ion-exchange capacity, electrochemical selectivity and mechanical strength as also characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. Water release kinetics has been measured by magnetic resonance imaging (NMR imaging) and is found to be in agreement with the sorption data. Similarly, methanol release kinetics studied by volume-localized NMR spectroscopy (point resolved spectroscopy, PRESS) clearly demonstrates that the dispersion of mordenite in PVA–PSSA retards the methanol release kinetics considerably. A peak power-density of 74 mW/cm2 is achieved for the DMFC using a PVA–PSSA membrane electrolyte with 50% degree of sulfonation and 10 wt.% dispersed mordenite phase. A methanol cross-over current as low as 7.5 mA/cm2 with 2 M methanol feed at the DMFC anode is observed while using the optimized composite membrane as electrolyte in the DMFC, which is about 60% and 46% lower than Nafion-117 and PVA–PSSA membranes, respectively, when tested under identical conditions.  相似文献   

17.
A series of poly(vinyl alcohol) (PVA)/poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) blend membranes with different PVA/PBLG-b-PEG mole ratios were prepared by pervaporation. Structure and morphologies of PVA/PBLG-b-PEG blend membranes were investigated using Fourier transformation infrared spectroscopy (FTIR), and atomic force microscopy (AFM). Mechanical and chemical properties of PVA/PBLG-b-PEG blend membrane were studied by tensile testing and other physical methods. It was revealed that the introduction of PBLG-b-PEG copolymer has significant effect on the properties of a PVA membrane.  相似文献   

18.
A synthetic method for the fabrication of silica-based mesoporous magnetic (Fe or iron oxide spinel) nanocomposites with enhanced adsorption and magnetic capabilities is presented. The successful in situ synthesis of magnetic nanoparticles is a consequence of the incorporation of a small amount of carbon into the pores of the silica, this step being essential for the generation of relatively large iron oxide magnetic nanocrystals (10 ± 3 nm) and for the formation of iron nanoparticles. These composites combine good magnetic properties (superparamagnetic behaviour in the case of SiO2–C–Fe3O4/γ–Fe2O3 samples) with a large and accessible porosity made up of wide mesopores (>9 nm). In the present work, we have demonstrated the usefulness of this kind of composite for the adsorption of a globular protein (hemoglobin). The results obtained show that a significant amount of hemoglobin can be immobilized within the pores of these materials (up to 180 mg g−1 for some of the samples). Moreover, we have proved that the composite loaded with hemoglobin can be easily manipulated by means of an external magnetic field.  相似文献   

19.
The effect of acyl chloride chemical structure on the ethanol aqueous solution dehydration through the poly(thiol ester amide) thin-film composite membrane prepared by reacting 2-aminoethanethiol (AETH) with trimesoyl chloride (TMC) or succinyl chloride (SCC) on the surface of the modified asymmetric polyacrylonitrile (mPAN) membrane was investigated. SEM/EDX, ATR-FTIR and water contact angle were applied to analyze the S element, chemical structure, and hydrophilicity of the poly(thiol ester amide) active layer of the composite membrane. In order to estimate the variation in the free volume of the poly(thiol ester amide) active layer and correlate that with the pervaporation performance, positron annihilation spectroscopy (PAS) experiments were conducted, in which a variable monoenergy slow positron beam was used. Doppler broadening S parameters of annihilation radiation energy spectra showed a significant variation with the acyl chloride chemical structures of the poly(thiol ester amide) active layers. The S parameters of the AETH–TMC/mPAN thin-film composite membrane were found to be lower than those of the AETH–SCC/mPAN thin-film composite membrane. In the ethanol aqueous solution dehydration, the AETH–TMC/mPAN thin-film composite membrane exhibited a lower permeation rate and a higher water concentration in the permeate than the AETH–SCC/mPAN. This is in good agreement with the analysis by positron annihilation spectroscopy. The solution effect dominated the pervaporation separation behavior of the poly(thiol ester amide) thin-film composite membrane with TMC substituting for SCC in the poly(thiol ester amide) active layer. The AETH–TMC/mPAN membrane was found to exhibit superior performance compared with some membranes discussed in the literature.  相似文献   

20.
Novel nanocomposite membranes (PVA–CNT(CS)) were prepared by incorporating chitosan-wrapped multiwalled carbon nanotube (MWNT) into poly(vinyl alcohol) (PVA). To further explore the intrinsic correlation between pervaporation performance and free volume characteristics, molecular dynamics simulation was first introduced to qualitatively analyze the contribution of carbon nanotube incorporation on improving free volume characteristics of the nanocomposite membranes. Secondly, the pervaporation performance of PVA–CNT(CS) nanocomposite membranes was investigated using permeation flux and separation factor as evaluating parameters. For benzene/cyclohexane (50/50, w/w) mixtures at 323 K, permeation flux and separation factor of pure PVA membrane are only 20.3 g/(m2 h) and 9.6, respectively, while the corresponding values of PVA–CNT(CS) (CNT content: 1%) nanocomposite membrane are 65.9 g/(m2 h) and 53.4. In order to explain the simultaneous increase of permeation flux and separation factor, as well as to check the calculation reliability of molecular dynamics simulation, positron annihilation lifetime spectroscopy (PALS) analysis was employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号