首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chemical doping of CVD grown graphene by introducing PTSA (n-type) and NBD (p-type) dopants is explored. This type of doping is key building block for photovoltaic and optoelectronic devices. Doped graphene samples display (1) high transmittance in the visible and near-infrared spectrum and (2) tunable graphene sheet resistance and work function. Large area and uniform graphene films were produced by chemical vapor deposition on copper foils and transferred onto quartz as transparent substrates. For n doping, a solution of p-toluenesulfonic acid (PTSA) was first dropped and spin-coated on the graphene/quartz and then annealed at 100°C for 10 min to make graphene uniformly n-type. Subsequently, a bare graphene was transferred on another quartz substrate, a solution of 4-nitrobenzenediazonium tetrafluoroborate (NBD) was dropped and spin-coated on the surface of graphene and similarly annealed. As a result, the graphene was p and n doped on the different quartz substrates. Doped graphene samples were characterized by different techniques. Experimental results suggested that doped graphene sheets with tunable electrical resistance and high optical transparency can be incorporated into photovoltaics and optoelectronics devices.  相似文献   

2.
High quality graphene sheets are synthesized through efficient oxidation process followed by rapid thermal expansion and reduction by H2. The number of graphene layers is controlled by tuning the oxidation degree of GOs. The higher the oxidation degree of GOs is getting, the fewer the numbers of graphene layers can be obtained. The material is characterized by elemental analysis, thermo-gravimetric analysis, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and Fourier transform infrared spectroscopies. The obtained graphene sheets with single, triple and quintuplicate layers as anode materials exhibit a high reversible capacity of 1175, 1007, and 842 mA h g−1, respectively, which show that the graphene sheets with fewer layers have higher reversible capacity.  相似文献   

3.
Large scale fractal graphene layers are obtained by complex method of liquid phase exfoliation and self-organization. Atomic force microscopy (AFM) is used to study the surface properties of formed layers and to assess their thickness. Surface potential of graphene and potential transition between the graphene and substrate is measured by Kelvin probe method. The influence of the effect of dielectric confinement on the optical properties of graphene is discussed in this work. Raman scattering spectra were used for structural analysis and assessment of the level of defects. Current-voltage characteristics of graphene ribbons were measured and discussed for different number of layers.  相似文献   

4.
The dependence of the thin film morphology and excited-state dynamics for the low-bandgap donor-acceptor copolymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) in pristine films and in blends (1:2) with [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) on the use of the solvent additive 1,8-octanedithiol (ODT) is studied by solid-state nuclear magnetic resonance (NMR) spectroscopy and broadband visible and near-infrared pump-probe transient absorption spectroscopy (TAS) covering a spectral range from 500-2000 nm. The latter allows monitoring of the dynamics of excitons, bound interfacial charge-transfer (CT) states, and free charge carriers over a time range from femto- to microseconds. The broadband pump-probe experiments reveal that excitons are not only generated in the polymer but also in PCBM-rich domains. Depending on the morphology controlled by the use of solvent additives, polymer excitons undergo mainly ultrafast dissociation (<100 fs) in blends prepared without ODT or diffusion-limited dissociation in samples prepared with ODT. Excitons generated in PCBM diffuse slowly to the interface in both samples and undergo dissociation on a time scale of several tens of picoseconds up to hundreds of picoseconds. In both samples a significant fraction of the excitons creates strongly bound interfacial CT states, which exhibit subnanosecond geminate recombination. The total internal quantum efficiency loss due to geminate recombination is estimated to be 50% in samples prepared without ODT and is found to be reduced to 30% with ODT, indicating that more free charges are generated in samples prepared with solvent additives. In samples prepared with ODT, the free charges exhibit clear intensity-dependent recombination dynamics, which can be modeled by Langevin-type recombination with a bimolecular recombination coefficient of 6.3 × 10(-11) cm(3) s(-1). In samples prepared without ODT, an additional nanosecond recombination of polaron pairs is observed in conjunction with an increased intensity-independent trap-assisted nongeminate recombination of charges. Furthermore, a comparison of the triplet-induced absorption spectra of PCPDTBT with the charge-induced absorption in PCPDTBT:PCBM blends reveals that triplets have a very similar excited-state absorption spectrum compared to the free charge carriers, however, in contrast have a distinct intensity-independent lifetime. Overall, our results suggest that whether free charges or strongly bound CT states are created upon dissociation of excitons at the PCPDTBT:PCBM interface is determined instantaneously upon exciton dissociation and that once formed strongly bound CT states rapidly recombine and thus are unlikely to dissociate into free charges. The observation of a significantly larger bimolecular recombination coefficient than previously determined for poly(3-hexylthiophen-2,5-diyl):PCBM (P3HT:PCBM) and PCDTBT:PCBM samples indicates that nongeminate recombination of free charges considerably competes with charge extraction in PCPDTBT:PCBM photovoltaic devices.  相似文献   

5.
The size-dependence on the electronic and transport properties of the molecular devices of the edge-modified graphene nanoribbon (GNR) slices is investigated using density-functional theory and Green's function theory. Two edge-modifying functional group pairs are considered. Energy gap is found in all the GNR slices. The gap shows an exponential decrease with increasing the slice size of two vertical orientations in the two edge terminated cases, respectively. The tunneling probability and the number of conducting channel decreases with increasing the GNR-slices size in the junctions. The results indicate that the acceptor-donor pair edge modulation can improve the quantum conductance and decrease the finite-size effect on the transmission capability of the GNR slice-based molecular devices.  相似文献   

6.
This contribution describes an organosiloxane cross-linking approach to robust, efficient, adherent hole-transport layers (HTLs) for polymer light-emitting diodes (PLEDs). An example is 4,4'-bis[(p-trichlorosilylpropylphenyl)phenylamino]biphenyl (TPDSi(2)), which combines the hole-transporting efficiency of N,N-diphenyl-N,N-bis(3-methylphenyl)-1,1-biphenyl)-4,4-diamine) (TPD, prototypical small-molecule HTL material) and the strong cross-linking/densification tendencies of organosilanol groups. Covalent chemical bonding of TPDSi(2) to PLED anodes (e.g., indium tin oxide, ITO) and its self-cross-linking enable fabrication of three generations of insoluble PLED HTLs: (1) self-assembled monolayers (SAMs) of TPDSi(2) on ITO; (2) cross-linked blend networks consisting of TPDSi(2) + a hole transporting polymer (e.g., poly(9,9-dioctylfluorene-co-N-(4-(3-methylpropyl))diphenylamine), TFB) on ITO; (3) TPDSi(2) + TFB blends on ITO substrates precoated with a conventional PLED HTL, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS). PLED devices fabricated using these new HTLs exhibit comparable or superior performance vs comparable devices based on PEDOT-PSS alone. With these new HTLs, current efficiencies as high as approximately 17 cd/A and luminances as high as approximately 140,000 cd/m(2) have been achieved. Further experiments demonstrate that not only do these HTLs enhance PLED anode hole injection but they also exhibit significantly greater electron-blocking capacity than PEDOT-PSS. The present organosiloxane HTL approach offers many other attractions such as convenience of fabrication, flexibility in choosing HTL components, and reduced HTL-induced luminescence quenching, and can be applied as a general strategy to enhance PLED performance.  相似文献   

7.
The effects of deoxycholic acid (DCA) and 4-tert-butylpyridine (TBP) as additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells were investigated. DCA coadsorption improved both the photocurrent and photovoltage of the solar cells, even though it decreased the amount of dye adsorbed on the TiO2 electrode. The improved photocurrent may arise from suppression of the deactivation of the excited state via quenching processes between dye molecules or a more negative LUMO level of the dye in the presence of DCA, resulting in a high electron-injection yield from the dye into TiO2. The increased photovoltage is probably due to suppression of recombination between the injected electrons and I3- ions on the TiO2 surface (dark current). The addition of TBP to the electrolyte also markedly improved the photovoltage and fill factor of the solar cell, and consequently, the total conversion efficiency increased from 3.6% to 7.5%. FT-IR spectroscopy indicated that a large amount of TBP was adsorbed on the dye-coated TiO2 films in the presence of Li cations. This result suggests that TBP, like DCA, suppressed the dark current on the TiO2 surface, which resulted in the improved photovoltage.  相似文献   

8.
《Tetrahedron letters》1986,27(3):331-334
The effect of additives on the “apparent” acidities of weak carbon acids as measured versus lithiated amides is found to be small (< 2 pK units). TMEDA is found to be the most effective in accelerating the rates of deprotonation of triphenylmethane.  相似文献   

9.
A graphene oxide/titania (GO/TiO(2)) nanocomposite was fabricated by a facile electrostatic attraction method. With high polarization of GO particles and a relatively high dielectric constant of TiO(2) nanoparticles, the GO/TiO(2) nanocomposite is observed to be a potential electro-responsive electrorheological material under an applied electric field.  相似文献   

10.
Most of the narrow band-gap polymers exhibit low open-circuit voltage (Voc) which limits the further improvement of photovoltaic performance. How to improve the Voc through fine tuning of the chemical structure is a significant project that worth exploring. As a big and strong electron accepting unit, fluorinated-quinoxaline based copolymers always show a narrow band gap and broad absorption which makes it a good template to study the changes of Voc through structure tuning. In this work, the effect of the subtle chemical structure modulation of polymer side chains and main chain on the Voc and photovoltaic performance was investigated. The Voc was adjusted effectively, and the power conversion efficiency (PCE) also was improved simultaneously. Although the PCE was not high enough as those high-performance polymers reported at present, the result indicates that fine tuning of chemical structure is an effective way to improve Voc and photovoltaic performance for narrow band-gap polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 699–706  相似文献   

11.
In this study, the effects of the various types of PEDOT:PSS with different conductivities on the photovoltaic parameters of organic solar cells were investigated. The performances of five various commercially available PEDOT:PSS with formulations such as FET, PT2, PH1000, PH500 and PH were compared. It was observed that the device employing PH1000 as an interlayer between ITO and the active layer exhibited the highest photovoltaic performance as compared to other devices with FET, PT2, PH500 and PH. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The stability of a common interface used in organic photovoltaic cells, between the transparent electrode of Indium Tin Oxide (ITO) and a buffer layer of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is strongly influenced by the presence of humidity during processing, leading to significant migration of indium and tin species into the PEDOT:PSS layer. The interface was studied using neutral impact collision ion scattering spectroscopy (NICISS) and X-ray photoelectron spectroscopy (XPS), to determine migration of indium and tin into the polymer layer. It was found that the migration starts almost instantly after spin coating of the aqueous PEDOT:PSS solution and it reaches a saturation level within twenty four hours. The indium and tin were found always uniformly distributed over the sampling depth of almost one-third of the thickness of the PEDOT:PSS layer. Exposure to humidity following annealing resulted in the highest concentration (1.8 × 10(-3) mol cm(-3)) of indium or tin species, corresponding to about one indium or tin moiety per 4.7 monomer units in the PEDOT:PSS. The maximum bulk concentration of indium is about two orders of magnitude higher after exposure to humid conditions compared to vacuum dried conditions. XPS measurements confirm the presence of both indium and tin in the PEDOT:PSS and the formation of salts with the metal ions as cations.  相似文献   

13.
采用热机械分析仪、高温热台显微镜、XRD及FactSage软件相结合的方法,研究了五彩湾煤灰的烧结特性及不同添加剂的影响规律。结果表明,沙子(SiO_2含量约为80%)和煤矸石(SiO_2含量为54%,Al_2O_3含量为42%)能改变煤灰的烧结特性(烧结温度和烧结速率),但不同添加剂改变的程度不同。添加10%的沙子能使烧结温度提高70℃,而0-15%煤矸石不能使烧结温度升高。此外,烧结速率随添加剂增多而减小,烧结区间随添加剂增多而延长。进一步研究表明,添加剂能够改变煤灰初始液相温度、组成、含量、煤灰中硫酸盐的分解温度及初始液相温度从而改变煤灰的烧结特性。  相似文献   

14.
Three stable polyradicals with large π-conjugated planar phenalenyl (PLY) radical units as side chain were synthesized. Due to the different conjugated backbones and the interactions between main chains and side chains, these polyradicals and their corresponding precursor polymers presented diverse optical and electrical properties, which were confirmed by UV–vis, fluorescence and CV detections. Besides, they showed excellent solubility in common organic solvents and good stability in the air. Considering their special characteristics, we have fabricated photovoltaic (PV) devices using these polyradicals or polymers as donor material and PCBM as acceptor material. The significant PV performance improvement was observed using a radical-based active layer in the PV devices.  相似文献   

15.
Currently, carbon nanotube (CNT) ‐based composites have been considered as microwave absorbers because of the fascinating properties of CNTs. In this work, multi‐walled CNTs (MWCNTs) and graphene oxide (GO) ‐based epoxy composites (i.e. MWCNT/EPr and GO‐MWCNT/EPr), with sample thickness of 2 mm, were prepared to study microwave absorbing properties in the frequency band of 8–18 GHz. Uniform dispersion of MWCNTs in the organic solvent and polymer matrix was achieved by preparation of GO. The test for electromagnetic parameters, i.e. complex permittivity and the permeability of the samples, was carried out with vector network analyzer (VNA) using reflection‐transmission waveguides. Results showed that GO‐MWCNT/EPr composites have better absorption capability than MWCNT/EPr composites. The improved reflection loss for the composites with 0.4 wt% and 0.6 wt% of GO (out of total filler loading 6 wt%) were ?14.32 dB and ?14.29 dB, respectively. The improvement in reflection loss and absorption bandwidth for GO‐MWCNTs composites suggested that MA features are synergistically effected by GO and MWCNTs. Further skin depth and shielding effectiveness terms are studied to observe overall mechanism of electromagnetic (EM) shielding which showed that multiple reflections also play a role in EM shielding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The deformation and strength characteristics, as well as rheological properties and biodegradability of film materials prepared by hot pressing and slot extrusion methods from polyethylene-plasticized starch-compatibilizer blends were examined. Polyethylene with grafted itaconic acid served as compatibilizer. The formulation and technological parameters of preparation of biodegradable film materials were optimized to meet the technical performance criteria.  相似文献   

17.
For verifying the influence of donor–acceptor supramolecules on photovoltaic properties, different hybrids were designed and used in organic solar cells. In this respect, reduced graphene oxide (rGO) was functionalization with 2‐thiophene acetic acid (rGO‐f‐TAA) and grafted with poly(3‐dodecylthiophene) (rGO‐g‐PDDT) and poly(3‐thiophene ethanol) (rGO‐g‐PTEt) to manipulate orientation of poly(3‐hexylthiophene) (P3HT) assemblies. Face‐on, edge‐on, and flat‐on orientations were detected for assembled P3HTs on rGO and its functionalized and grafted derivatives, respectively. Alteration of P3HT orientation from face‐on to flat‐on enhanced current density (J sc), fill factor (FF), and power conversion efficiency (PCE) and thus J sc = 7.11 mA cm?2, FF = 47%, and PCE = 2.14% were acquired. By adding phenyl‐C71‐butyric acid methyl ester (PC71BM) to active layers composed of pre‐designed P3HT/rGO, P3HT/rGO‐f‐TAA, P3HT/rGO‐g‐PDDT, and P3HT/rGO‐g‐PTEt hybrids, photovoltaic characteristics further improved, demonstrating that supramolecules appropriately mediated in P3HT:PC71BM solar cells. Phase separation was more intensified in best‐performing photovoltaic systems. Larger P3HT crystals assembled onto grafted rGOs (95–143 nm) may have acted as convenient templates for the larger and more intensified phase separation in P3HT:PCBM films. The best performances were reached for P3HT:P3HT/rGO‐g‐PDDT:PCBM (J sc = 9.45 mA cm?2, FF = 54%, and PCE = 3.16%) and P3HT:P3HT/rGO‐g‐PTEt:PCBM (J sc = 9.32 mA cm?2, FF = 53%, and PCE = 3.11%) photovoltaic systems. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1877–1889  相似文献   

18.
The modification mechanism of the water/alcohol cathode interlayer is one of the most complicated problems in the field of organic photovoltaics,which has not been clearly elucidated yet;this greatly restricts the further enhancement of the PCE for polymer solar cells.Herein,we clarified the different effects of PFN and its derivatives,namely,poly[(9,9-bis(3'-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN-Br) in modifying fullerene-free PSCs.It is found for the first time that doping on IT-4F by the amino group of PFN leads to the unfavorable charge accumulation,and hence,forms a dense layer of electronegative molecule due to the poor electron transport capacity of the non-fullerene acceptor IT-4F.The electronegative molecular layer can block the electron transfer from the active layer to the interlayer and cause serious charge recombination at the active layer/cathode interface.This mechanism could be verified by the ESR measurement and electron-only devices.By replacing PFN with PFN-Br,the excessive doping effect between the cathode interlayer and IT-4F is eliminated,by which the charge transport and collection can be greatly improved.As a result,a high PCE of 13.5%was achieved in the fullerene-free PSCs.  相似文献   

19.
Two new low-molecular weight compounds — (Z)-4-(4-(dimethylamino)benzylidene)-1-(9-ethyl-9H-carbazol-3-yl)-2-phenyl-1H-imidazol-5(4H)-one and 2-(6-hydroxyhexyl)-6-(pyrrolidin-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione) — with possible application in organic light-emitting devices were synthesized. Their photophysical properties in solution and in polymer films were investigated. The determined relative fluorescence quantum yields in solution for both compounds were 0.003 and 0.51, while those in poly(methyl methacrylate) films were around 0.10 and 1.0, respectively. For 1H-imidazol-5(4H)-one derivative, single-layer organic displays with one emitting layer were prepared by spin-coating technology. The applied voltage was 40 V (AC) with 1–3 KHz frequency. The emission maximum of the experimental AC display structures was at 600–630 nm. For displays with 2-(6-hydroxyhexyl)-6-(pyrrolidin-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione) the applied voltage was 60 V (AC) with 6-9 KHz frequency, but its future success will require more appropriate binding polymers. Based on the obtained experimental results, it is concluded that the investigated compounds could be applied for preparation of color electroluminescent structures.   相似文献   

20.
Silver ferrite–graphene (AgFeO2‐G) as a nanocomposite photocatalyst shows potent visible‐light photocatalytic activity for the degradation of organic contaminants, and generates the strong oxidants hydroxyl radical (OH) and superoxide anion radical (O2•−) via photoelectrochemical decomposition of H2O and O2 in the presence of air and visible light irradiation. The photogenerated electrons of AgFeO2 can transfer easily from the conduction band to the reduced graphene oxide, efficiently preventing the direct recombination of electrons and holes. As a matter of fact, AgFeO2 has a low bandgap. Furthermore, AgFeO2 nanoparticles themselves have a magnetic property, which makes them magnetically separable. The experimental results show that the graphene nanosheets in the nanocomposite catalyst are exfoliated and decorated homogeneously with AgFeO2 nanoparticles. The photodegradation occurs in a short time (ca 40 min). Also, the photocatalytic activity of the nanocomposite does not show any clear loss after ten recycles of the degradation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号