首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Multilayers of strained metamagnetic EuSe intercalated with nonmagnetic PbSe1-xTex were grown by molecular beam epitaxy under conditions optimized by electron diffraction. From detailed structural and magnetic characterization using anomalous synchrotron x-ray diffraction and magnetization measurements, the phase transition temperatures and the magnetic phase diagrams of strained EuSe as a function of the in-plane lattice constant are determined. In this way, it is demonstrated that the magnetic properties of the samples can be significantly changed by applying biaxial strain on EuSe in superlattice structures.  相似文献   

2.
We report on the ultrafast dynamics of magnetic order in a single crystal of CuO at a temperature of 207 K in response to strong optical excitation using femtosecond resonant x-ray diffraction. In the experiment, a femtosecond laser pulse induces a sudden, nonequilibrium increase in magnetic disorder. After a short delay ranging from 400 fs to 2 ps, we observe changes in the relative intensity of the magnetic ordering diffraction peaks that indicate a shift from a collinear commensurate phase to a spiral incommensurate phase. These results indicate that the ultimate speed for this antiferromagnetic reorientation transition in CuO is limited by the long-wavelength magnetic excitation connecting the two phases.  相似文献   

3.
We report the first observation of a weak ferromagnetic state of Cr in Cr/Ru(0001) superlattices, based on magnetic hysteresis and corroborated by x-ray magnetic circular dichroism at the CrL(2,3) edges. In situ reflection high-energy electron diffraction, x-ray diffraction, and Cr K-edge polarized x-ray absorption investigations have shown that the Cr layers thinner than 8 angstroms adopt a slightly distorted hcp structure, accompanied by a large atomic volume expansion of up to 14% compared to the bcc packing volume. The expanded hcp structure clearly induces the observed ferromagnetism, in agreement with theory.  相似文献   

4.
We report the first demonstration of resonant x-ray diffraction microscopy for element specific imaging of buried structures with a pixel resolution of approximately 15 nm by exploiting the abrupt change in the scattering cross section near electronic resonances. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent x-ray diffraction patterns acquired below and above the Bi M5 edge. We anticipate that resonant x-ray diffraction microscopy will be applied to element and chemical state specific imaging of a broad range of systems including magnetic materials, semiconductors, organic materials, biominerals, and biological specimens.  相似文献   

5.
This paper reports that a large amount of Mn-doped ZnO nanorods have been synthesized through thermal evaporation. The morphologies and properties are studied with x-ray diffraction, a scanning electron microscope, transmission electron microscope and Raman spectroscope. The results indicate that the manganese atoms occupy the zinc vacancies in the wurtzite lattice of ZnO without forming secondary phases. The exact manganese content has been studied by the x-ray fluorescence spectrum. Meanwhile, the magnetic moment versus temperature result proves that the as-prepared Mn-doped ZnO nanorods show ferromagnetic properties at temperatures as high as 400 K. These studies provide a good understanding of the origin of magnetic properties in diluted magnetic semiconductors.  相似文献   

6.
We report the first proof-of-principle experiment of iterative phase retrieval from magnetic x-ray diffraction. By using the resonant x-ray excitation process and coherent x-ray scattering, we show that linearly polarized soft x rays can be used to image both the amplitude and the phase of magnetic domain structures. We recovered the magnetic structure of an amorphous terbium-cobalt thin film with a spatial resolution of about 75 nm at the Co L3 edge at 778 eV. In comparison with soft x-ray microscopy images recorded with Fresnel zone plate optics at better than 25 nm spatial resolution, we find qualitative agreement in the observed magnetic structure.  相似文献   

7.
We studied the structural properties of an orbital-spin-coupled spinel oxide, MnV2O4, mainly by single-crystal x-ray diffraction measurement. It was found that a structural phase transition from cubic to tetragonal and ferrimagnetic ordering occur at the same temperature (Ts,TN=57 K). The structural phase transition was induced also by magnetic field above Ts. In addition, magnetic-field-induced alignment of tetragonal domains results in large magnetostriction below Ts. We also found that the structural phase transition is caused by the antiferro-type ordering of the V t2g orbitals.  相似文献   

8.
Nd-doped In_2O_3 nanowires were fabricated by an Au-catalyzed chemical vapor deposition method.Nd atoms were successfully doped into the In_2O_3 host lattice structure,as revealed by energy dispersive x-ray spectroscopy,x-ray photoelectron spectroscopy,Raman spectroscopy,and x-ray diffraction.Robust room temperature ferromagnetism was observed in Nd-doped In_2O_3 nanowires,which was attributed to the long-range-mediated magnetization among Nd~(3+)-vacancy complexes through percolation-bound magnetic polarons.  相似文献   

9.
We investigated the magnetic structure of an orthorhombic YMnO(3) thin film by resonant soft x-ray and hard x-ray diffraction. We observed a temperature-dependent incommensurate magnetic reflection below 45 K and a commensurate lattice-distortion reflection below 35 K. These results demonstrate that the ground state is composed of coexisting E-type and cycloidal states. Their different ordering temperatures clarify the origin of the large polarization to be caused by the E-type antiferromagnetic states in the orthorhombic YMnO(3) thin film.  相似文献   

10.
We have conducted the first soft x-ray diffraction experiments from a bulk single crystal, studying the bilayer manganite La2-2xSr1+2xMn2O7 with x=0.475 in which we were able to access the (002) Bragg reflection using soft x rays. The Bragg reflection displays a strong resonant enhancement at the L(III) and L(II) manganese absorption edges. We demonstrate that the resonant enhancement of the magnetic diffraction of the (001) is extremely large, indeed so large that it exceeds that of the nonresonant Bragg diffraction. Resonant soft x-ray scattering of 3d transition metal oxides is the only technique for the atomic selective measurement of spin, charge, and orbital correlations in materials, such as high temperature superconductors, colossal magnetoresistance manganites, and charge stripe nickelates.  相似文献   

11.
We report the recording and reconstruction of x-ray diffraction patterns from single, unstained viruses, for the first time. By separating the diffraction pattern of the virus particles from that of their surroundings, we performed quantitative and high-contrast imaging of a single virion. The structure of the viral capsid inside a virion was visualized. This work opens the door for quantitative x-ray imaging of a broad range of specimens from protein machineries and viruses to cellular organelles. Moreover, our experiment is directly transferable to the use of x-ray free electron lasers, and represents an experimental milestone towards the x-ray imaging of large protein complexes.  相似文献   

12.
We present a detailed study of magnetism in LuFe(2)O(4), combining magnetization measurements with neutron and soft x-ray diffraction. The magnetic phase diagram in the vicinity of T(N) involves a metamagnetic transition separating an antiferro- and a ferrimagnetic phase. For both phases the spin structure is refined by neutron diffraction. Observed diffuse magnetic scattering far above T(N) is explained in terms of near degeneracy of the magnetic phases.  相似文献   

13.
14.
Based on measurements of soft x-ray magnetic diffraction under in situ applied electric field, we report on significant manipulation and exciting of commensurate magnetic order in multiferroic ErMn2O5. The induced magnetic scattering intensity arises at the commensurate magnetic Bragg position whereas the initial magnetic signal almost persists. We demonstrate the possibility to imprint a magnetic response function in ErMn2O5 by applying an electric field.  相似文献   

15.
In recent years there have been reports of anomalous electrical resistivity and the presence of superconductivity in semiconducting InN layers. By a careful correlation of the temperature dependence of resistivity and magnetic susceptibility with structural information from high-resolution x-ray diffraction measurements, we show that superconductivity is not intrinsic to InN and is seen only in samples that show traces of oxygen impurity. We hence believe that InN is not intrinsically a superconducting semiconductor.  相似文献   

16.
The magnetic splitting of Delta(2) valence states in the heavy lanthanide metals Gd, Tb, Dy, and Ho was studied in epitaxial films by angle-resolved photoemission, revealing an essentially Stoner-like temperature dependence in all cases. It scales linearly with the 4f spin moment, even in the case of the helical antiferromagnet Ho. Such a behavior can be explained by a substantial localization of the corresponding wave function in the c direction. The helical magnetic structure was confirmed for the thin Ho films by in situ resonant magnetic x-ray diffraction.  相似文献   

17.
Elemental chromium orders antiferromagnetically near room temperature, but the ordering temperature can be driven to zero by applying large pressures. We combine diamond anvil cell and synchrotron x-ray diffraction techniques to measure directly the spin and charge order in the pure metal at the approach to its quantum critical point. Both spin and charge order are suppressed exponentially with pressure, well beyond the region where disorder cuts off such a simple evolution, and they maintain a harmonic scaling relationship over decades in scattering intensity. By comparing the development of the order parameter with that of the magnetic wave vector, it is possible to ascribe the destruction of antiferromagnetism to the growth in electron kinetic energy relative to the underlying magnetic exchange interaction.  相似文献   

18.
We have utilized resonant x-ray diffraction at the Mn L(II,III) edges in order to directly compare magnetic and orbital correlations in Pr0.6Ca0.4MnO3. Comparing the widths of the magnetic and orbital diffraction peaks, we find that the magnetic correlation length exceeds that of the orbital order by nearly a factor of 2. Furthermore, we observe a large (approximately 3 eV) spectral weight shift between the magnetic and orbital resonant line shapes, which cannot be explained within the classic Goodenough picture of a charge-ordered ground state. To explain the shift, we calculate the orbital and magnetic resonant diffraction line shapes based on a relaxed charge-ordered model.  相似文献   

19.
The diluted magnetic semiconductor Ga1-xMnxN was achieved by low-pressure metal organic vapour-phase epitaxy (LP-MOVPE). Proton-induced x-ray emission was employed non-destructively, quickly and accurately to determine the Mn-doped content. The magnetic property was measured by a superconducting-quantum-interference-device (SQID) magnetometer. Apparent ferromagnetic hysteresis loops measured at or above room temperature are presented. No ferromagnetic secondary phases were detected by high-resolution x-ray diffraction. The experimental results show that the ferromagnetic signal firstly decreases and then increases with the increasing Mn-doped content from 0.23% to 4.69% and it is the weakest when Mn content is 0.51%. The annealing treatment could make the ferromagnetic property stronger.  相似文献   

20.
We have investigated oxygen precipitation in Czochralski silicon wafers focusing on influence of nucleation temperature and high temperature pre-anneal during common three step treatment. Thick Si wafers were studied mainly by x-ray diffraction in Laue transmission geometry using Mo x-ray tube, but were also compared to reciprocal space maps obtained in Bragg reflection geometry. The analysis of measured diffraction scans in Laue geometry was performed by means of Takagi equations and statistical dynamical theory of diffraction. From the simulated Laue diffraction curves we find the size of the individual defect area and the fraction of strain area volume in the wafer. The results obtained from x-ray diffraction were compared to loss of interstitial oxygen according to infrared absorption spectroscopy and the size of SiO2 precipitate core was estimated. These techniques are in agreement with transmission electron microscopy images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号