首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this study, 95Mo quadrupole couplings in various molydbates were measured easily and accurately with magic angle spinning (MAS) NMR under a directing field of 19.6 T. The resonance frequency of 54 MHz was sufficiently high to remove acoustic ringing artifacts, and the spectra could be analyzed in the usual terms of chemical shift and quadrupolar line shapes. For monomolybdates and molybdite, the quadrupole coupling dominated the NMR response, and the quadrupole parameters could be measured with better accuracy than in previous lower field studies. Moreover, despite the low symmetry of the molybdenum coordination, the usefulness of such measurements to probe molybdenum environments was established by ab initio density functional theory (DFT) calculations of the electric field gradient from known structures. The experimental NMR data correlated perfectly with the refined structures. In isopolymolybdates, the resonances were shapeless and DFT calculations were impossible because of the large and low symmetry unit cells. Nevertheless, empirical but clear NMR signatures were obtained from the spinning sidebands analysis or the MQMAS spectra. This was possible for the first time thanks to the improved baseline and sensitivity at high fields. With the generalization of NMR spectrometers operating above 17 T, it was predicted that 95Mo MAS NMR could evolve as a routine characterization tool for ill-defined structures such as supported molybdates in catalysis.  相似文献   

2.
The factors contributing to the accuracy of quantum-chemical calculations for the prediction of proton NMR chemical shifts in molecular solids are systematically investigated. Proton chemical shifts of six solid amino acids with hydrogen atoms in various bonding environments (CH, CH2, CH3, OH, SH and NH3) were determined experimentally using ultra-fast magic-angle spinning and proton-detected 2D NMR experiments. The standard DFT method commonly used for the calculations of NMR parameters of solids is shown to provide chemical shifts that deviate from experiment by up to 1.5 ppm. The effects of the computational level (hybrid DFT functional, coupled-cluster calculation, inclusion of relativistic spin-orbit coupling) are thoroughly discussed. The effect of molecular dynamics and nuclear quantum effects are investigated using path-integral molecular dynamics (PIMD) simulations. It is demonstrated that the accuracy of the calculated proton chemical shifts is significantly better when these effects are included in the calculations.  相似文献   

3.
Using (51)V magic angle spinning solid-state NMR, SSNMR, spectroscopy and quantum chemical DFT calculations we have characterized the chemical shift and quadrupolar coupling parameters of a series of eight hydroxylamido vanadium(V) dipicolinate complexes of the general formula VO(dipic)(ONR1R2)(H2O) where R1 and R2 can be H, CH3, or CH2CH3. This class of vanadium compounds was chosen for investigation because of their seven-coordinate vanadium atom, a geometry for which there is limited (51)V SSNMR data. Furthermore, a systematic series of compounds with different electronic properties are available and allows for the effects of ligand substitution on the NMR parameters to be studied. The quadrupolar coupling constants, C(Q), are small, 3.0-3.9 MHz, but exhibit variations as a function of the ligand substitution. The chemical shift tensors in the solid state are sensitive to changes in both the hydroxylamide substituent and the dipic ligand, a sensitivity which is not observed for isotropic chemical shifts in solution. The chemical shift tensors span approximately 1000 ppm and are nearly axially symmetric. On the basis of DFT calculations of the chemical shift tensors, one of the largest contributors to the magnetic shielding anisotropy is an occupied molecular orbital with significant vanadium d(z)2 character along the V=O bond.  相似文献   

4.
(51)V NMR parameters have been calculated for VOCl(3), the reference compound in (51)V NMR spectroscopy, in order to capture environmental effects in both the neat liquid and the solid state. Using a combination of periodic geometry optimizations and Car-Parrinello molecular dynamics simulations with embedded cluster NMR calculations, we are able to test the ability of current computational approaches to reproduce (51)V NMR properties (isotropic shifts, anisotropic shifts and quadrupole coupling constants) in the gas, liquid and solid states, for direct comparison with liquid and solid-state experimental data. The results suggest that environmental effects in the condensed phases can be well captured by an embedded cluster approach and that the remaining discrepancy with experiment may be due to the approximate density functionals in current use. The predicted gas-to-liquid shift on the isotropic shielding constant is small, validating the common practice to use a single VOCl(3), molecule as reference in (51)V NMR computations.  相似文献   

5.
The molecular dynamics of a series of organometallic complexes covalently bound to amorphous silica surfaces is determined experimentally using solid-state nuclear magnetic resonance (NMR) spectroscopy and density functional theory calculations (DFT). The determination is carried out for a series of alkylidene-based catalysts having the general formula [([triple bond]SiO)M(ER)(=CH(t)Bu)(R')] (M = Re, Ta, Mo or W; ER = C(t)Bu, NAr or CH2(t)Bu; R' = CH2(t)Bu, NPh2, NC4H4). Proton-carbon dipolar coupling constants and carbon chemical shift anisotropies (CSA) are determined experimentally by solid-state NMR. Room-temperature molecular dynamics is quantified through order parameters determined from the experimental data. For the chemical shift anisotropy data, we validate and use a method that integrates static values for the CSA obtained computationally by DFT, obviating the need for low-temperature measurements. Comparison of the room-temperature data with the calculations shows that the widths of the calculated static limit dipolar couplings and CSAs are always greater than the experimentally determined values, providing a clear indication of motional averaging on the NMR time scale. Moreover, the dynamics are found to be significantly different within the series of molecular complexes, with order parameters ranging from = 0.5 for [([triple bond]SiO)Ta(=CH(t)Bu)(CH2(t)Bu)2] and [([triple bond]SiO)Re([triple bond]C(t)Bu)(=CH(t)Bu)(CH2(t)Bu)] to = 0.9 for [([triple bond]SiO)Mo([triple bond]NAr)(=CH(t)Bu)(R') with R' = CH2(t)Bu, NPh2, NC4H4. The data also show that the motion is not isotropic and could be either a jump between two sites or more likely restricted librational motion. The dynamics are discussed in terms of the molecular structure of the surface organometallic complexes, and the orientation of the CSAs tensor at the alkylidene carbon is shown to be directly related to the magnitude of the alpha-alkylidene CH agostic interation.  相似文献   

6.
Although difficult to analyze, NMR chemical shifts provide detailed information on protein structure. We have adapted the semi-empirical bond polarization theory (BPT) to protein chemical shift calculation and chemical shift driven protein structure refinement. A new parameterization for BPT amide nitrogen chemical shift calculation has been derived from MP2 ab initio calculations and successfully evaluated using crystalline tripeptides. We computed the chemical shifts of the small globular protein ubiquitin, demonstrating that BPT calculations can match the results obtained at the DFT level of theory at very low computational cost. In addition to the calculation of chemical shift tensors, BPT allows the calculation of chemical shift gradients and consequently chemical shift driven geometry optimizations. We applied chemical shift driven protein structure refinement to the conformational analysis of a set of Trypanosoma brucei (the causative agent of African sleeping sickness) tryparedoxin peroxidase Px III structures. We found that the interaction of Px III with its reaction partner Tpx seems to be governed by conformational selection rather than by induced fit.  相似文献   

7.
Insight into the unexpectedly small range of isotropic nitrogen chemical shifts in nitrobenzene derivatives is gained through measurements of the chemical shift (CS) tensor by solid-state NMR experiments and ab initio molecular orbital (MO) and density functional theory (DFT) calculations. The principal components, delta(ii), of the (15)N CS tensors have been measured for nitrobenzene, 4-nitroaniline, 4-nitrotoluene, 4-nitroanisole, 4-nitroacetophenone, nitromesitylene, and 2,4,6-tri-tert-butylnitrobenzene. No obvious correlations of the delta(ii) values with traditional reactivity parameters were observed. The CS tensor components change significantly for the para-substituted nitrobenzenes, but these variations nearly cancel to yield isotropic shifts that fall in a range of only 3 ppm. Ab initio calculations of the delta(ii) values at the HF level are in poor agreement with the experimental values, whereas MP2 calculations and DFT calculations employing the B3LYP functional are in better agreement with experiment. The calculated (B3LYP/6-311G) delta(ii) values follow a trend in which delta(11) and delta(33) increase while delta(22) decreases with the accepted electron withdrawing ability of the para substituent. These changes tend to cancel yielding a variation in delta(iso) of only 4 ppm. These calculations indicate that the CS tensor has the same orientation as the carbon CS tensor in the isoelectronic benzoate anion: delta(11) bisects the O-N-O angle, delta(33) is perpendicular to the NO(2) plane, and delta(22) is in the NO(2) plane and perpendicular to delta(11).  相似文献   

8.
We present a computational study of magnetic‐shielding and quadrupolar‐coupling tensors of 43Ca sites in crystalline solids. A comparison between periodic and cluster‐based approaches for modeling solid‐state interactions demonstrates that cluster‐based approaches are suitable for predicting 43Ca NMR parameters. Several model chemistries, including Hartree–Fock theory and 17 DFT approximations (SVWN, CA‐PZ, PBE, PBE0, PW91, B3PW91, rPBE, PBEsol, WC, PKZB, BMK, M06‐L, M06, M06‐2X, M06‐HF, TPSS, and TPSSh), are evaluated for the prediction of 43Ca NMR parameters. Convergence of NMR parameters with respect to basis sets of the form cc‐pVXZ (X = D, T, Q) is also evaluated. All DFT methods lead to substantial, and frequently systematic, overestimations of experimental chemical shifts. Hartree–Fock calculations outperform all DFT methods for the prediction of 43Ca chemical‐shift tensors. © 2017 Wiley Periodicals, Inc.  相似文献   

9.
A variety of density functional methods have been evaluated in the computation of electronic g-tensors and molybdenum hyperfine couplings for systems ranging from the Mo atom through MoIIIN, [MoVOCl4]-, and [MoVOF5]2- to two larger MoV complexes MoXLCl2 (X=O, S; L=tris(3,5-dimethylpyrazolyl)hydroborate anion). In particular, the influence of the molybdenum basis set and of various exchange-correlation functionals with variable admixtures of Hartree-Fock exchange on the computed EPR parameters have been evaluated in detail. Careful basis-set studies have provided a moderate-sized 12s6p5d all-electron basis on molybdenum that gives hyperfine tensors in excellent agreement with much larger basis sets and that will be useful for calculations on larger systems. The best agreement with experimental data for both hyperfine and g-tensors is obtained with hybrid functionals containing approximately 30-40% Hartree-Fock exchange. Only for MoSLCl2 does increasing spin contamination with increasing exact-exchange admixture restrict the achievable computational accuracy. In all cases, spin-orbit corrections to the hyperfine tensors are sizable and have to be included in accurate calculations. Scalar relativistic effects enhance the isotropic Mo hyperfine coupling by approximately 15-20%. Two-component g-tensor calculations with variational inclusion of spin-orbit coupling show that the Deltag parallel components in [MoVOCl4]- and [MoVOF5]2- depend on higher-order spin-orbit contributions and are thus described insufficiently by the usual second-order perturbation approaches. Computed orientations of g- and hyperfine tensors relative to each other and to the molecular framework for the MoXLCl2 complexes provide good agreement between theory and single-crystal electron paramagnetic resonance experiments. In these cases, the hyperfine tensor orientations are influenced only slightly by spin-orbit effects.  相似文献   

10.
The analysis of heavy-metal solids with NMR spectroscopy provides a means of investigating the electronic environment through the dependence of the chemical shift on structure. We have investigated the relation of the 207Pb NMR isotropic chemical shift, span, and skew of a series of solid Pb(II) compounds to lattice parameters. Complementary relativistic spin-orbit density functional calculations on clusters such as PbI64- that model the local environment in the dihalides show a dependence of NMR properties on the local structure in good agreement with experimental results.  相似文献   

11.
The excellent results of dispersion‐corrected density functional theory (DFT‐D) calculations for static systems have been well established over the past decade. The introduction of dynamics into DFT‐D calculations is a target, especially for the field of molecular NMR crystallography. Four 13C ss‐NMR calibration compounds are investigated by single‐crystal X‐ray diffraction, molecular dynamics and DFT‐D calculations. The crystal structure of 3‐methylglutaric acid is reported. The rotator phases of adamantane and hexamethylbenzene at room temperature are successfully reproduced in the molecular dynamics simulations. The calculated 13C chemical shifts of these compounds are in excellent agreement with experiment, with a root‐mean‐square deviation of 2.0 ppm. It is confirmed that a combination of classical molecular dynamics and DFT‐D chemical shift calculation improves the accuracy of calculated chemical shifts.  相似文献   

12.
The isotropic 129Xe NMR chemical shift of atomic Xe dissolved in liquid benzene was simulated by combining classical molecular dynamics and quantum chemical calculations of 129Xe nuclear magnetic shielding. Snapshots from the molecular dynamics trajectory of xenon atom in a periodic box of benzene molecules were used for the quantum chemical calculations of isotropic 129Xe chemical shift using nonrelativistic density functional theory as well as relativistic Breit?CPauli perturbation corrections. Thus, the correlation and relativistic effects as well as the temperature and dynamics effects could be included in the calculations. Theoretical results are in a very good agreement with the experimental data. The most of the experimentally observed isotropic 129Xe shift was recovered in the nonrelativistic dynamical region, while the relativistic effects explain of about 8% of the total 129Xe chemical shift.  相似文献   

13.
We present (1)H NMR chemical shift calculations of liquid water based on first principles molecular dynamics simulations under periodic boundary conditions. We focus on the impact of computational parameters on the structural and spectroscopic data, which is an important question for understanding how sensitive the computed (1)H NMR resonances are upon variation of the simulation setup. In particular, we discuss the influence of the exchange-correlation functional and the size of the basis set, the choice for the fictitious electronic mass and the use of pseudopotentials for the nuclear magnetic resonance (NMR) calculation on one hand and the underlying Car-Parrinello-type molecular dynamics simulations on the other hand. Our findings show that the direct effect of these parameters on (1)H shifts is not big, whereas the indirect dependence via the structural data is more important. The (1)H NMR chemical shifts clearly reflect the induced structural changes, illustrating once again the sensitivity of (1)H NMR observables on small changes in the local chemical structure of complex hydrogen-bonded liquids.  相似文献   

14.
19F NMR measurements and theoretical calculations were performed to study paramagnetic complexes of iodoperfluorocarbons with stable nitroxide radicals. Contrary to what is usually measured for diamagnetic halogen-bonded complexes involving iodoperfluorocarbons, it was found that the formation of complexes with the 2,2,6,6-tetramethyl(piperidin-1-yloxyl) (TEMPO) radical determines downfield shifts in the 19F NMR spectra. The experimental finding was confirmed by calculating nuclear shielding using density functional theory and correcting the isotropic diamagnetic (19)F chemical shift with contact interactions evaluated from the hyperfine coupling tensor. The computational analysis of the interaction between CF3I and TEMPO, by using DFT and MP2 theories, showed that the occurrence of the halogen bond between the interacting partners is associated with a significant charge transfer to CF3I and that the measured downfield shift is due to the occurring spin transfer.  相似文献   

15.
NMR chemical shifts are highly sensitive probes of local molecular conformation and environment and form an important source of structural information. In this study, the relationship between the NMR chemical shifts of nucleic acids and the glycosidic torsion angle, χ, has been investigated for the two commonly occurring sugar conformations. We have calculated by means of DFT the chemical shifts of all atoms in the eight DNA and RNA mono-nucleosides as a function of these two variables. From the DFT calculations, structures and potential energy surfaces were determined by using constrained geometry optimizations at the BP86/TZ2P level of theory. The NMR parameters were subsequently calculated by single-point calculations at the SAOP/TZ2P level of theory. Comparison of the (1) H and (13) C?NMR shifts calculated for the mono-nucleosides with the shifts determined by NMR spectroscopy for nucleic acids demonstrates that the theoretical shifts are valuable for the characterization of nucleic acid conformation. For example, a clear distinction can be made between χ angles in the anti and syn domains. Furthermore, a quantitative determination of the χ angle in the syn domain is possible, in particular when (13) C and (1) H chemical shift data are combined. The approximate linear dependence of the C1' shift on the χ angle in the anti domain provides a good estimate of the angle in this region. It is also possible to derive the sugar conformation from the chemical shift information. The DFT calculations reported herein were performed on mono-nucleosides, but examples are also provided to estimate intramolecularly induced shifts as a result of hydrogen bonding, polarization effects, or ring-current effects.  相似文献   

16.
(19)F isotropic chemical shifts for alkali, alkaline earth and rare earth of column 3 basic fluorides are measured and the corresponding isotropic chemical shieldings are calculated using the GIPAW method. When using the PBE exchange-correlation functional for the treatment of the cationic localized empty orbitals of Ca(2+), Sc(3+) (3d) and La(3+) (4f), a correction is needed to accurately calculate (19)F chemical shieldings. We show that the correlation between experimental isotropic chemical shifts and calculated isotropic chemical shieldings established for the studied compounds allows us to predict (19)F NMR spectra of crystalline compounds with a relatively good accuracy. In addition, we experimentally determine the quadrupolar parameters of (25)Mg in MgF(2) and calculate the electric field gradients of (25)Mg in MgF(2) and (139)La in LaF(3) using both PAW and LAPW methods. The orientation of the EFG components in the crystallographic frame, provided by DFT calculations, is analysed in terms of electron densities. It is shown that consideration of the quadrupolar charge deformation is essential for the analysis of slightly distorted environments or highly irregular polyhedra.  相似文献   

17.
Solid-state 95Mo NMR spectroscopy is shown to be an efficient and effective tool for analyzing the diamagnetic octacyanomolybdate(IV) anions, Mo(CN)(8)4-, of approximate dodecahedral, D(2d), and square antiprismatic, D(4d), symmetry. The sensitivity of the Mo magnetic shielding (sigma) and electric field gradient (EFG) tensors to small changes in the local structure of these anions allows the approximate D(2d) and D(4d) Mo(CN)(8)4- anions to be readily distinguished. The use of high applied magnetic fields, 11.75, 17.63 and 21.1 T, amplifies the overall sensitivity of the NMR experiment and enables more accurate characterization of the Mo sigma and EFG tensors. Although the magnitudes of the Mo sigma and EFG interactions are comparable for the D(2d) and D(4d) Mo(CN)(8)4- anions, the relative values and orientations of the principal components of the Mo sigma and EFG tensors give rise to 95Mo NMR line shapes that are significantly different at the fields utilized here. Quantum chemical calculations of the Mo sigma and EFG tensors, using zeroth-order regular approximation density functional theory (ZORA DFT) and restricted Hartree-Fock (RHF) methods, have also been carried out and are in good agreement with experiment. The most significant and surprising result from the DFT and RHF calculations is a significant EFG at Mo for an isolated Mo(CN)(8)4- anion possessing an ideal square antiprismatic structure; this is contrary to the point-charge approximation, PCA, which predicts a zero EFG at Mo for this structure.  相似文献   

18.
Based on multifield NMR relaxation measurements and quantum chemistry calculations, a strategy aiming at the determination of the chemical shielding tensor (CST) in the liquid state is described. Brownian motions in the liquid state restrict the direct observation of CST to a third of its trace (isotropic shift), and even if CST can be probed indirectly through some spin relaxation rates (specific longitudinal relaxation rates, dipolar chemical shift anisotropy (CSA) cross-correlation rates), an insufficient number of experimental parameters prevents its complete determination. This lack of information can be compensated by using quantum chemical calculations so as to obtain the molecular CST orientation even if a relatively modest level of computation is used. As relaxation parameters involve a dynamic part, a prerequisite is the determination of the molecular anisotropic reorientation which can be obtained independently from dipolar cross-relaxation rates. A polycyclic molecule exhibiting a well-characterized anisotropic reorientation serves as an example for such a study, and some (but not all) carbon-13 chemical shielding tensors can be accurately determined. A comparison with solid-state NMR data and numerous chemical quantum calculations are presented.  相似文献   

19.
The Fourier Transform Infrared spectrum of (S)-4 ethyl-4-hydroxy-1H-pyrano [3',4':6,7]-indolizino-[1,2-b-quinoline-3,14-(4H,12H)-dione] [camptothecin] was recorded in the region 4000-400 cm(-1). The Fourier Transform Raman spectrum of camptothecin (CPT) was also recorded in the region 3500-50 cm(-1). Quantum chemical calculations of geometrical structural parameters and vibrational frequencies of CPT were carried out by MP2/6-31G(d,p) and density functional theory DFT/B3LYP/6-311++G(d,p) methods. The assignment of each normal mode has been made using the observed and calculated frequencies, their IR and Raman intensities. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. Most of the computed frequencies were found to be in good agreement with the experimental observations. The isotropic chemical shifts computed by (13)C and (1)H NMR analysis also show good agreement with experimental observations. Comparison of calculated spectra with the experimental spectra provides important information about the ability of computational method to describe the vibrational modes of large sized organic molecule.  相似文献   

20.
1H and 13C NMR chemical shifts are exquisitely sensitive probes of the local environment of the corresponding nuclei. Ultimately, direct determination of the chemical shifts of sterols in their membrane environment has the potential to reveal their molecular interactions and dynamics, in particular concerning the hydrogen-bonding partners of their OH groups. However, this strategy requires an accurate and efficient means to quantify the influence of the various interactions on chemical shielding. Herein the validity of Hartree-Fock and DFT calculations of the 13C and 1H NMR chemical shifts of cholesterol and ergosterol are compared with one another and with experimental chemical shifts measured in solution at 500 MHz. A computational strategy (definition of basis set, simpler molecular models for the sterols themselves and their molecular complexes) is proposed and compared with experimental data in solution. It is shown in particular that the effects of hydrogen bonding with various functional groups (water as a hydrogen-bond donor and acceptor, acetone) on NMR chemical shifts in CDCl3 solution can be accurately reproduced with this computational approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号