首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angle-strained alkyne-containing π-conjugated macrocycles are attractive compounds both in functional materials chemistry and biochemistry. Their interesting reactivity as well as photophysical and supramolecular properties have been revealed in the past three decades. This review highlights the recent advances in angle-strained alkyne-containing π-conjugated macrocycles, especially their synthetic methods, the bond angles of alkynes (∠sp at C≡C−C), and their functions. The theoretical and experimental research on cyclo[n]carbons and para-cyclophynes consisting of ethynylenes and para-phenylenes are mainly summarized. Related macrocycles bearing other linkers, such as ortho-phenylenes, meta-phenylenes, heteroaromatics, biphenyls, extended aromatics, are also overviewed. Bond angles of strained alkynes in π-conjugated macrocycles, which are generable, detectable, and isolable, are summarized at the end of this review.  相似文献   

2.
We describe the development of two procedures for the synthesis of peptides that are embedded with a variety of π-conjugated semi-conducting oligomers. These procedures utilise solid-phase variants of classical palladium-catalysed cross-couplings commonly used to prepare π-conjugated oligomers. The resulting peptide–π–electron hybrids are soluble in aqueous media and self-assemble to produce 1D nanostructures, simultaneously forming networks of π-stacked conduits. The procedures have allowed for the inclusion of complex chromophores including mixed aryl units, ethynylene linkers and sexithiophenes where the latter peptide's nanostructures demonstrated substantial conductivity when employed as an active layer in a field-effect transistor.  相似文献   

3.
The extension of conjugated organoboranes from monomeric species to oligomers, macrocycles, and polymers offers access to a plethora of fascinating new materials. The p–π* conjugation between empty orbitals on boron and the conjugated linkers not only affects the electronic structure and optical properties, but also enables mutual interactions between electron-deficient boron centers. The unique properties of these electron-deficient π-conjugated systems are exploited in highly luminescent materials, organic optoelectronic devices, and sensing applications.  相似文献   

4.
Carbon nanotubes (CNTs) have unusual physical properties that are valuable for nanotechnology and electronics, but the chemical synthesis of chirality- and diameter-specific CNTs and π-conjugated CNT segments is still a great challenge. Reported here are the selective syntheses, isolations, characterizations, and photophysical properties of two novel chiral conjugated macrocycles ([4]cyclo-2,6-anthracene; [4]CAn2,6 ), as (−)/(+)-(12,4) carbon nanotube segments. These conjugated macrocyclic molecules were obtained using a bottom-up assembly approach and subsequent reductive elimination reaction. The hoop-shaped molecules can be directly viewed by a STM technique. In addition, chiral enantiomers with (−)/(+) helicity of the [4]CAn2,6 were successfully isolated by HPLC. The new tubular CNT segments exhibit large absorption and photoluminescence redshifts compared to the monomer unit. The carbon enantiomers are also observed to show strong circularly polarized luminescence (glum≈0.1). The results reported here expand the scope of materials design for bottom-up synthesis of chiral macrocycles and enrich existing knowledge of their optoelectronic properties.  相似文献   

5.
Linear conjugated polymers have attracted significant attention in organic electronics in recent decades. However, despite intrachain π-delocalization, interchain hopping is their transport bottleneck. In contrast, two-dimensional (2D) conjugated polymers, as represented by 2D π-conjugated covalent organic frameworks (2D c-COFs), can provide multiple conjugated strands to enhance the delocalization of charge carriers in space. Herein, we demonstrate the first example of thiophene-based 2D poly(arylene vinylene)s (PAVs, 2DPAV-BDT-BT and 2DPAV-BDT-BP , BDT=benzodithiophene, BT=bithiophene, BP=biphenyl) via Knoevenagel polycondensation. Compared with 2DPAV-BDT-BP , the fully thiophene-based 2DPAV - BDT - BT exhibits enhanced planarity and π-delocalization with a small band gap (1.62 eV) and large electronic band dispersion, as revealed by the optical absorption and density functional calculations. Remarkably, temperature-dependent terahertz spectroscopy discloses a unique band-like transport and outstanding room-temperature charge mobility for 2DPAV-BDT-BT (65 cm2 V−1 s−1), which far exceeds that of the linear PAVs, 2DPAV-BDT-BP , and the reported 2D c-COFs in the powder form. This work highlights the great potential of thiophene-based 2D PAVs as candidates for high-performance opto-electronics.  相似文献   

6.
Fourteen platinum(II) porphyrins with different π-conjugated macrocycles and different electron-donating or electron-withdrawing substituents were investigated as to their electrochemical and spectroscopic properties in nonaqueous media. Eight compounds have the formula (Ar(4)P)Pt(II), where Ar(4)P = the dianion of a tetraarylporphyrin, while six have π-extented macrocycles with four β,β'-fused benzo or naphtho groups and are represented as (TBP)Pt(II) and (TNP)Pt(II) where TBP and TNP are the dianions of tetrabenzoporphyrin and tetranaphthoporphyrin, respectively. Each Pt(II) porphyrin undergoes two reversible one-electron reductions and one to three reversible one-electron oxidations in nonaqueous media. These reactions were characterized by cyclic voltammetry, UV-visible thin-layer spectroelectrochemistry and in some cases by ESR spectroscopy. The two reductions invariably occur at the conjugated π-ring system to yield relatively stable Pt(II) π-anion radicals and dianions. The first oxidation leads to a stable π-cation radical for each investigated porphyrin; but in the case of tetraarylporphyrins containing electron-withdrawing substituents, the product of the second oxidation may undergo an internal electron transfer to give a Pt(IV) porphyrin with an unoxidized macrocycle. The effects of macrocycle structure on UV-visible spectra, oxidation/reduction potentials, and site of electron transfer are discussed.  相似文献   

7.
Alkynyl-substituted phenyldithiafulvenes have been found to act as versatile building blocks for the construction of π-conjugated molecular rods, shape-persistent macrocycles (SPMs), and conducting polymers. Through Cu(I)-catalyzed alkynyl homocoupling, a series of linear-shaped π-extended tetrathiafulvalene analogues (exTTFs) carrying conjugated oligoynes (ranging from diyne to hexayne) as the central π-bridge were readily prepared. The solid-state properties and reactivities of diyne- and tetrayne-centered exTTFs were characterized by X-ray crystallography and differential scanning calorimetry (DSC), while the electronic properties of the oligoyne-exTTFs were elucidated by UV-vis absorption spectroscopy and density functional theory (DFT) calculations. Cyclic voltammetric analysis showed that the terminal phenyldithiafulvene groups of the oligyne-exTTFs could undergo oxidative coupling to form tetrathiafulvalene vinylogue (TTFV)-linked polymer wires. Through a different synthetic route involving oxidative dimerization and Pd/Cu-catalyzed alkynyl homocoupling, the acetylenic phenyldithiafulvene precursors led to shape-persistent macrocycles where the formation of trimeric macrocycles was particularly favored due to the small ring strain incurred. Finally, spectroelectrochemical studies on these oligoyne and TTF hybrid materials disclosed electrochromic and molecular redox-controlled switching properties applicable to molecular electronic and optoelectronic devices.  相似文献   

8.
Recently, there has been a progressive development of insulated π-conjugated metallopolymers with accumulated features of π-conjugated bridging units, transition metal complexes, and encapsulating moieties, as higher-order functionalized materials. A number of insulated conjugated metallopolymers have been successfully synthesized and their fascinating properties have been reported. In addition to the conventional features derived from π-conjugation and transition metals, their insulated structures can compensate for solubility, a disadvantage in conventional metallopolymers, and enhance their functionalities, such as sensing, luminescence, and conduction. In this review, we summarize the synthetic methodologies, structural characteristics, and functionalities of one-dimensional insulated π-conjugated metallopolymers, while focusing on the effect of transition metals and insulation on their properties.  相似文献   

9.
Highly stereospecific polymerization of monosubstituted acetylenes was carried out using the Rh complex, [Rh(norbornadiene)Cl]2 catalysts. The resulting polyacetylenes were characterized in detail by 1HNMR, ESR, laser Raman, diffuse reflective UV, and wide angle X-ray diffraction methods. The data showed that the Rh complex were the preferred catalyst to selectively yield the corresponding cis-transoid polymers even at room temperature when alcohol, triethylamine or water was used as the polymerization solvent. Additionally, the resulting cis polyacetylenes were found to have a helical form whose polymer is amorphous or composed of pseudohexagonal structures called π-conjugated columnar as self-assembly or super structure. Further compression of the amorphous cis polymers resulted in cis to trans isomerization at room temperature under vacuum, breaking rotationally the cis C=C bonds giving π-radicals called solitons as the origin of a polymer magnet. On the other hand, the π-conjugated columnar was also found to show an extremely longer wavelength absorption compared with that of the amorphous one, although the absorption maximum was shifted to a shorter wavelength when the columnar was destroyed by the compression. Therefore, the formation of the π-conjugated columnar can be considered as a new and quite useful control method concerning color of such conjugated polymers, i.e., a new concept concerning the color of conjugated polymers.  相似文献   

10.
Currently, most organic semiconducting materials (OSMs) are π-conjugated structures in one or two dimension (2D), where the lack of layer-layer π-conjugation connection greatly blocks their electron delocalization and transport. The 3D fully conjugated materials could solve this issue because they can provide efficient charge-transport pathways throughout the whole 3D skeleton, in which the suitable 3D building block is the key to the development of fully conjugated 3D OSMs. Cyclooctatetraene (COT) and its derivatives are good candidates due to their π-conjugation with 3D saddle-shaped architecture. In this Concept, we discuss the key features of saddle-shaped COT-based derivatives and their synthetic strategy, then we present the current development of using the COT derivatives as building blocks to construct the 3D fully conjugated organic small compound- and polymer-based OSMs. The properties and perspectives of these OSMs in photovoltaics, electro-catalysis and electrical conductivities are also discussed. These recent advances in the developing 3D fully conjugated materials could potentially open up a new frontier in the design of OSMs.  相似文献   

11.
In π-conjugated macrocycles, there is a trade-off between the global and local expression of effects such as aromaticity, with the outcome of the trade-off determined by the geometry and aromaticity of the constituent units. Compared with other aromatic rings, the aromatic character of furan is relatively small, and therefore global effects in macrocyclic furans are expected to be more pronounced. Following our introduction of macrocyclic oligofuran, we present the first synthesis of a series of π-conjugated bifuran macrocycles of various ring sizes, from trimer to hexamer, and characterize them using both computational and experimental methods. The properties of macrocyclic oligofurans change considerably with size: The smaller trimer is rigid, weakly emissive and planar as revealed by its single crystal structure, and displays global antiaromaticity. In contrast, the larger pentamer and hexamer are flexible, emissive, have non-planar structures, and exhibit local aromaticity. The results are supported by NICS and ACID calculations that indicate the global antiaromaticity of planar furan macrocycles, and by transient absorption measurements showing sharp absorption band for the trimer and only the internal conversion decay pathway.  相似文献   

12.
The design of molecules with delocalized π-electronic structures which are useful as organic conductor and light-emitting diodes(LEDs) has attracted much attention.[1-2] We have synthesized some conjugated Schiff base macrocycles containing 1,3,4-oxadiazole(such as compound 1) and after being doped with I2,they showed electrical conductivity in the region of semiconductor.[3] To continue this work and understand the relationship between molecular structure and solid state properties, we designed other conjugated schiff base macrocycle containing 1,3,4-oxadiazole.  相似文献   

13.
As a novel class of materials, D–A conjugated macrocycles hold significant promise for chemical science. However, their potential in photovoltaic remains largely untapped due to the complexity of introducing multiple donor and acceptor moieties into the design and synthesis of cyclic π-conjugated molecules. Here, we report a multiple D–A ring-like conjugated molecule ( RCM ) via the coupling of dimer molecule DBTP-C3 as a template and thiophenes in high yields. RCM exhibits a narrow optical gap (1.33 eV) and excellent thermal stability, and shows a remarkable photoluminescence yield (ΦPL) of 11.1 % in solution, much higher than non-cyclic analogues. Organic solar cell (OSC) constructed with RCM as electron acceptor shows efficient charge separation at donor-acceptor band offsets and achieves a power conversion efficiency (PCE) of 14.2 %-approximately fourfold higher than macrocycle-based OSCs reported so far. This is partly due to low non-radiative voltage loss down to 0.20 eV and a high electroluminescence yield (ΦEL) of 4×10−4. Our findings emphasize the potential of D–A cyclic conjugated molecules in advancing organic photovoltaic technology.  相似文献   

14.
Linear π-conjugated oligomers have been widely investigated, but the behavior of the corresponding cyclic oligomers is poorly understood, despite the recent synthesis of π-conjugated macrocycles such as [n]cycloparaphenylenes and cyclo[n]thiophenes. Here we present an efficient template-directed synthesis of a π-conjugated butadiyne-linked cyclic porphyrin hexamer directly from the monomer. Small-angle X-ray scattering data show that this nanoring is shape-persistent in solution, even without its template, whereas the linear porphyrin hexamer is relatively flexible. The crystal structure of the nanoring-template complex shows that most of the strain is localized in the acetylenes; the porphyrin units are slightly curved, but the zinc coordination sphere is undistorted. The electrochemistry, absorption, and fluorescence spectra indicate that the HOMO-LUMO gap of the nanoring is less than that of the linear hexamer and less than that of the corresponding polymer. The nanoring exhibits six one-electron reductions and six one-electron oxidations, most of which are well resolved. Ultrafast fluorescence anisotropy measurements show that absorption of light generates an excited state that is delocalized over the whole π-system within a time of less than 0.5 ps. The fluorescence spectrum is amazingly structured and red-shifted. A similar, but less dramatic, red-shift has been reported in the fluorescence spectra of cycloparaphenylenes and was attributed to a high exciton binding energy; however the exciton binding energy of the porphyrin nanoring is similar to those of linear oligomers. Quantum-chemical excited state calculations show that the fluorescence spectrum of the nanoring can be fully explained in terms of vibronic Herzberg-Teller (HT) intensity borrowing.  相似文献   

15.
The introduction of unconventional elements into π-conjugated systems has been studied to manipulate the electronic states and properties of compounds. Herein, boron- and germanium-containing hybrid macrocycles, as a new class of element-hybrid conjugated systems, have been synthesized. The palladium-catalyzed Stille cross coupling of bis(bromothienyl)borane and bis(trimethylstannylthienyl)- or bis(trimethylstannylphenyl)-substituted dithienogermoles as the boron- and germanium-containing building blocks, respectively, produced a mixture of several macrocyclic compounds. Single-crystal X-ray analysis of the 2:2 coupling product revealed a planar structure with a cavity inside the macrocycle. The optical properties of the macrocyclic products indicated rather small electronic interactions between the building units. However, intramolecular photoenergy transfer from the dithienogermole unit to the boron unit was clearly observed with respect to the fluorescence spectra.  相似文献   

16.
Fiber-like π-conjugated nanostructures are important components of flexible organic electronic and optoelectronic devices. To broaden the range of potential applications, one needs to control not only the length of these nanostructures, but the introduction of diverse functionality with spatially selective control. Here we report the synthesis of a crystalline-coil block copolymer of oligo(p-phenylenevinylene)-b-poly(2-vinylpyridine) (OPV5-b-P2VP44), in which the basicity and coordinating/chelating ability of the P2VP segment provide a landscape for the incorporation of a variety of functional inorganic NPs. Through a self-seeding strategy, we were able to prepare monodisperse fiber-like micelles of OPV5-b-P2VP44 with lengths ranging from 50 to 800 nm. Significantly, the exposed two ends of OPV core of these fiber-like micelles remained active toward further epitaxial deposition of OPV5-b-PNIPAM49 and OPV5-b-P2VP44 to generate uniform A-B-A and B-A-B-A-B segmented block comicelles with tunable lengths for each block. The P2VP domains in these (co-)micelles can be selectively decorated with inorganic and polymeric nanoparticles as well as metal oxide coatings, to afford hybrid fiber-like nanostructures. This work provides a versatile strategy toward the fabrication of narrow length dispersity continuous and segmented π-conjugated OPV-containing fiber-like micelles with the capacity to be decorated in a spatially selective way with varying functionalities.  相似文献   

17.
The association of linear or macrocyclic polyethers with the electronic properties of the π-conjugated polythiophene backbone leads to functional conducting polymers that exhibit metal cation dependent electronic properties. Based on this concept, various classes of cation sensors have been proposed and investigated for almost two decades. The interactions of metal cations with linear or macrocyclic polyether functional groups lead to modifications of the electronic properties of the π-conjugated backbone through various mechanisms including direct electronic effects on a single conjugated chain, collective electrochemical processes, or conformational changes. Conjugated polymers and oligomers representative of these various processes are discussed with an emphasis on recent examples of derivatized conjugated systems in which the interactions between metal cations and polyether groups serve as driving force to create molecular motion in conjugated systems.  相似文献   

18.
Ionic organic crystals containing organic planar π-conjugated units has become one of the hot spots as nonlinear optical (NLO) materials. However, although this type of ionic organic NLO crystals commonly have remarkable second harmonic generation (SHG) responses, they also suffer from overlarge birefringences and relatively small band gaps that be hardly beyond 6.2 eV. Herein, a flexible π-conjugated [C3H(CH3)O4]2− unit was theoretically revealed, showing great potential for designing NLO crystals with balanced optical properties. Accordingly, through the reasonable NLO-favourable layered design, a new ionic organic material, NH4[LiC3H(CH3)O4], was successfully obtained. As expected, it achieves not only a large SHG effect (4×KDP), but also a suitable birefringence (0.06@546 nm) and an ultrawide band gap (>6.5 eV). This study provides a new flexible π-conjugated NLO-active unit, contributing to design more ionic organic NLO materials with excellent balanced optical properties.  相似文献   

19.
This feature article reports on the use of DNA as a template to assemble dyes and π-conjugated systems with the aim to construct functional multicomponent nanostructures that have a well-defined size, shape and sequence.  相似文献   

20.
Cyclobis[n]helicenes (n=3 or 5) are chiral D2-symmetric π-conjugated macrocycles with stable lemniscular, or figure-eight, shapes. The conformational analysis of five different cyclobis[n]helicenes revealed that these molecules can only exist as their lemniscular conformers with high barriers to enantiomerization (>200 kJ mol−1). The enantiomers of a cyclobis[5]helicene were resolved by HPLC and their unusual chiroptical properties were attributed to the inherent chirality of their macrocyclic figure-eight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号