首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
制备了钨钴酸根与钨铜酸根阴离子掺杂的聚吡咯膜电极,并对其电化学行为进行了初步研究。结果表明,在微酸性或近中性的溶液中,该电极有良好的电化学稳定性及循环伏安行为。聚吡咯膜对钨铜酸根阴离子的第2个氧化还原过程有明显的催化作用。电子自旋共振显示杂聚阴离子与聚吡咯分子链形成了某种复合物,此复合物对聚吡咯电结构的影响随阴离子的不同而异。  相似文献   

2.
郎建平  忻新泉 《化学学报》1996,54(5):461-467
本文报道了一系列多核Mo(W)-Cu(Ag)-S族合物的低热固相合成, 发现硫代钼(钨)酸铵与铜(银)的成簇规律主要与固相反应温度密切相关, 提出了四核至七核Mo(W)-Cu(Ag)-S簇合物的可能成簇机理。  相似文献   

3.
张敏  周尚  朱乾华  杨琼  杨季冬 《应用化学》2013,30(3):335-342
在酸性介质中,钼酸根、钨酸根等同多酸根与盐酸哌唑嗪(PRH)和甲磺酸多沙唑嗪(Dox)等α1受体阻滞剂反应形成离子缔合物时,会导致体系的共振瑞利散射(RRS)显著增强并出现新的RRS光谱,最大散射峰分别位于367 nm(钼酸根体系)和290 nm(钨酸根体系)。 PRH和Dox与同多酸根的反应产物具有相似的RRS光谱特征。 其反应的适宜酸度分别为pH值2.1~2.3(钼酸根-PRH体系)和pH值3.1~3.3(钨酸根-PRH体系)。 在一定浓度范围内,不同的反应体系RRS强度增强程度与药物浓度成正比,均可用于痕量药物的测定。 反应具有很高的灵敏度,不同同多酸对PRH的检出限(3σ/s)分别为4.76 μg/L(钼酸根-PRH体系)和9.88 μg/L(钨酸根-PRH体系)。 方法也具有较好的选择性,用于片剂和人尿液中的α1受体阻滞剂的测定,结果满意。 此外,本文还应用计算化学软件Gaussview3.07和Gaussian03W,采用密度泛函法,在B3LYP/6-31G基组水平上计算了盐酸哌唑嗪的电荷分布,对反应机理和RRS增强的原因进行了讨论。  相似文献   

4.
通过使用联咪唑及其衍生物2种有机配体在水热条件下合成了2个多酸基化合物[Ag4(biz)4][H2P2Mo5O23]·2H2O(1)和[Ag4(bbiz)4][HPWⅥ10WⅤ2O40](2)(biz=2,2-联咪唑,bbiz=5-丁基-2,2-联咪唑),并通过单晶X-射线衍射、元素分析和红外光谱对其进行了表征。化合物1包含双核银簇[Ag2(biz)2]2+,[P2Mo5O23]6-多阴离子通过提供端基氧原子连接相邻双核银簇而构筑了一维链结构。在化合物2中,每个Keggin型阴离子提供4个桥氧原子来连接4个双核银簇[Ag2(bbiz)2]2+,从而构筑一个二维的层结构。此外,对标题化合物的电化学、光催化以及荧光性能也进行了研究。  相似文献   

5.
Au/Ag核一壳结构复合纳米粒子形成机制的研究   总被引:13,自引:0,他引:13  
纪小会  王连英  袁航  马岚  白玉白  李铁津 《化学学报》2003,61(10):1556-1560
在已制备好的Au纳米粒子表面,通过化学还原的方法沉积生长Ag包覆层,通过 控制Au, Ag的比列,制备了粒度均匀且粒径可控的Au/Ag核-壳结构纳米粒子。利用 UV-vis吸收光谱和透射电子显微镜(TEM)对SAu, Ag摩尔比为1:10的复合纳米粒 子的光学性质和形态进行随时监测,直接观察了核-壳结构纳米粒子的生长过程: 一部分Ag+在Au核表面还原生长,溶液中其余Ag+还原形成银的纳米团簇向粒子表面 的继续沉积生长,壳层增厚。  相似文献   

6.
采用化学沉淀法制备ZnO微球,利用柠檬酸三钠(TCD)避光还原硝酸银在ZnO表面沉积银粒子制备Ag/ZnO复合材料.利用XRD、SEM、TEM、EDS、FTIR、UV-vis DRS、PL、BET等对Ag/ZnO的结构、组分、形貌及光谱性质进行了表征,通过紫外及可见光照降解甲基橙溶液评价样品的光催化性能.结果表明:ZnO纳米微球是由ZnO纳米片相互交错构筑而成的具有丰富孔道的分级结构,Ag纳米粒子均匀沉积在ZnO纳米片上.Ag的沉积显著增加了ZnO的可见光吸收,猝灭了ZnO荧光,提高了ZnO催化活性.  相似文献   

7.
在已制备好的Au纳米粒子表面,通过化学还原的方法沉积生长Ag包覆层,通过 控制Au, Ag的比列,制备了粒度均匀且粒径可控的Au/Ag核-壳结构纳米粒子。利用 UV-vis吸收光谱和透射电子显微镜(TEM)对SAu, Ag摩尔比为1:10的复合纳米粒 子的光学性质和形态进行随时监测,直接观察了核-壳结构纳米粒子的生长过程: 一部分Ag+在Au核表面还原生长,溶液中其余Ag+还原形成银的纳米团簇向粒子表面 的继续沉积生长,壳层增厚。  相似文献   

8.
利用紫外光作为辅助条件,在反胶束体系中采用一步双原位法合成了硝酸(HNO3)、对甲基苯磺酸(TSA)和5-磺基水杨酸(SSA)掺杂的银/聚苯胺(Ag/PANI)纳米复合材料.通过对复合材料进行红外光谱(FTIR)、紫外光谱(UV-Vis)、扫描电镜(SEM)、X射线衍射(XRD)和导电性能的测试,研究了不同质子酸对Ag/PANI纳米复合材料结构、形貌和导电性能的影响.测试结果表明,3种酸掺杂制备的Ag/PANI纳米复合材料均为聚苯胺包覆银粒子的核-壳结构.不同的质子酸掺杂会对Ag/PANI纳米复合材料的电性能有重要影响.在3种酸掺杂的复合材料中,TSA掺杂的复合材料的电导率最佳,为215.14 S·cm-1.  相似文献   

9.
本文研究了Bi2O3掺杂对Ag(Nb0.8Ta0.2)O3陶瓷的结构和介电性能的影响。X射线衍射(XRD)结果表明,Bi2O3的掺杂可以使陶瓷中Ag+被还原并析出,且银析出的量随Bi2O3掺杂量的增加而不断增加,这可能源自于Bi3+对Ag+的取代。在一定范围内增大Bi2O3掺杂量可提高Ag(Nb0.8Ta0.2)O3陶瓷的室温介电常数,降低介电损耗,并使温度系数向负值方向移动。当Bi2O3的掺杂量约为3.5wt%时,样品具有较大的介电常数(ε=672)和较小的介电损耗(tanδ=7.3×10-4)。  相似文献   

10.
Ag掺杂TiO2纳米管阵列的制备及光电催化降解氨氮废水   总被引:1,自引:0,他引:1  
采用光化学沉积法、光还原法以及光电沉积法3种不同的掺杂方法 ,通过控制掺杂时间来控制Ag的担载量制备出Ag-TiO2纳米管阵列。采用场发射扫描电镜(FE-SEM)、X-射线衍射(XRD)、X-射线光电子能谱(XPS)、X-射线荧光光谱(PL)对样品进行表征。用氨氮废水的光电催化降解反应评价其催化活性,研究不同的掺杂方法以及不同的Ag担载量对TiO2纳米管阵列光催化性能的影响。结果表明:适量的Ag的引入有利于光催化效率的提高,即Ag的掺杂量存在一个最佳值,光电沉积60 s制备的样品具有最佳的光电催化效率。  相似文献   

11.
Nanocomposite films [Ag/(PAH‐PSS)nPAH]m were fabricated on a silicon substrate using a time‐ and cost‐efficient spin‐assisted layer‐by‐layer (SA‐LbL) self‐assembly technique. A virtually monolayer‐like layer of self‐assembled silver nanoparticles was formed when deposition time increased to 30 min. It was found that polymer multilayers could effectively decrease the resistivity of silver nanoparticle monolayer, which was far higher than that of bulk silver metal; however, the resistivity of Ag/(PAH‐PSS)nPAH multilayer films increased along with the increasing of the number of polymer bilayers. XPS investigations showed that silver nanoparticles were partially oxidized, which might be the major cause of the high resistivity of silver nanoparticle monolayer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Cast‐hybrid films composed of polyvinyl alcohol (PVA) and silver nitrate were treated according to three different ways, thermal annealing, UV‐irradiation, and chemical reduction by a borohydride solution, to obtain PVA/silver nanocomposite films. The nanostructuration process was studied as a function of the treatment conditions, and discussed as a function of the mobility state of the polymer chains in the nanocomposite matrix during treatment. A homogeneous dispersion of crystalline silver nanoparticles was obtained by thermal annealing above Tg and below Tm and UV‐lamp irradiation below Tg. For these two treatments, the major processing parameters were the annealing temperature and time and the UV‐exposure time, respectively. For low‐conversion rate in Ag(0), the films evolved upon ageing at room temperature. Totally different morphology and Ag(0) conversion were achieved by chemical reduction in a borohydride solution. All the silver ions were reduced into Ag(0), and crystalline silver nanoparticles layers parallel to the film surface were observed after the treatment. This morphology was related to the high‐swollen state of the polymer matrix during treatment. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2062–2071, 2008  相似文献   

13.
A series of Ag‐enhanced TiO2–x/C composites (Ag/TiO2–x/C composites) with metal‐organic frameworks (MOFs) as precursors were prepared, and their photocatalytic activities were evaluated by the UV‐light driven photodegradation behaviors of methyl blue (MB). The as‐obtained samples were characterized by several techniques such as SEM, XRD, N2‐adsorption, XPS, UV/Vis spectrophotometry and UV/Vis diffuse‐reflectance spectra. The best photocatalytic performance was achieved in Ag/TiO2–x/C composite pyrolyzed at 1000 °C (ATC‐P10) due to rapid capture of electrons caused by silver doping, higher density of TiO2–x lattice oxygen vacancies for better trapping of electrons, and high surface area due to reduction and evaporation of metallic Zn. No obvious deactivation was observed after 10 cycles of UV‐light degradation of MB under the same experimental conditions. This report reveals a new approach to prepare stable and highly efficient UV‐light‐driven photocatalysts for organic pollutants in water.  相似文献   

14.
Two novel two‐dimensional silver(I) polymers, [Ag(5‐bsa)]n ( 1 ) and [Ag(2‐aba)]n ( 2) (5‐bsaH = 5‐bromosalicylic acid and 2‐abaH = 2‐aminobenzoic acid), have been synthesized from the reaction of Ag2O and carboxylate ligands in ammonia solution and structurally determined by single‐crystal X‐ray diffraction analyses. 1 crystallizes in the monoclinic space group P21/c with a = 7.316(2), b = 8.171(2), c = 13.051(3) Å, U = 777.0(3) Å3, β = 95.14(3) and Z = 4. 2 crystallizes in the orthorhombic space group Pna21 with a = 5.9486(8), b = 24.227(3), c = 4.9042(6) Å, U = 706.8(2) Å3, and Z = 4. In 1 , 5‐bsa serves as tridentate ligands coordinating to three Ag+ ions through its hydroxyl and bridging ligand carboxyl groups, with the Ag‐Ag bonding and two carboxylate ions defined in a slight distorted plane and further extending into a two‐dimension layer through the hydroxyl and the overlapping and off‐set stacking interactions. In 2 , adjacent Ag+ ions via Ag‐Ag bonding interactions generate a one‐dimension silver chain and adjacent silver chains are further linked by μ2‐N, O atoms of 2‐aba to result in a two‐dimensional configuration, with the inter‐chain hydrogen bonding interaction forming a three‐dimension supramolecular structure. Both the two silver(I) complexes have strong inhibitory activities against Jack Bean urease with the IC50 values of 21.98 μM for 1 and 25.34 μM for 2 , but neglectable inhibition activity on Xanthine Oxidase.  相似文献   

15.
Six organophosphine/phosphite‐stabilized silver(I) N‐hydroxysuccinimide complexes of type [C4H4NO3Ag?Ln] (L = PPh3; n = 1, 2a; n = 2, 2b; L = P(OEt)3; n = 1, 2c; n = 2, 2 d; L = P(OMe)3; n = 1, 2e; n = 2, 2f) were prepared. These complexes were obtained in high yields and characterized by elemental analysis, 1H NMR, 13 C{1H} NMR and IR spectroscopy, respectively. The molecular structure of 2b has been determined by X‐ray single‐crystal analysis in which the silver atom is in a distorted tetrahedral geometry. An interstitial methanol solvent molecule is hydrogen bonded to the oxygen atom of N‐hydroxysuccinimide molecule. Complex 2f was used to deposit silver films by metal‐organic chemical vapor deposition (MOCVD) for the first time. The silver film obtained at 480 °C is dense and homogeneous, which is composed of many well‐isolated, granular particulates spreading all over the substrate surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Thin films of cerium tungstate prepared in situ by cerium deposition in oxygen atmosphere onto the W(100) single‐crystal were investigated by means of photoelectron spectroscopy and low‐energy electron diffraction (LEED). The studied temperature range was 173–1073 K. It was found that the temperature necessary for the oriented growth of Ce6WO12(100) was 673 K, and at higher temperatures, the LEED pattern improved. Photoemission data revealed the partial formation of CeO2 on the surface at preparation temperatures below 473 K due to limited diffusion of tungsten atoms from the substrate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The O2 adsorption and dissociation on M‐doped (M = Cu, Ag, W) Al(111) surface were studied by density functional theory. The adsorption energy of adsorbate, the average binding energy and surface energy of Al surface, and the doping energy of doping atom were calculated. All the doped atoms can be stably combined with Al atoms, while being slightly embedded in the surface to a certain depth. The TOP‐type surfaces are the most stable doped surfaces for O2 adsorption, which is related to the orbital hybridization between the adsorbate and the surface atoms, the electronegativity, and the orbital energy level of the doping atoms. Moreover, the O atoms and doping atoms contribute significantly to the density of states (DOS), especially the O‐p orbital electrons and the d orbital electrons of doping atoms. The degree of O2 dissociation is related to the doping atoms on Al surfaces, and the doping atoms actually resist the dissociation of O2. W atoms have the best resistance effect on the O2 dissociation as compared with Cu and Ag atoms, especially W‐1NN surface, which has both large barrier energy and reaction energy.  相似文献   

18.
《先进技术聚合物》2018,29(3):1107-1116
Carbopol‐silver nanocomposites, CP‐Ag‐NCs, were prepared by a chemical reducing method by using formaldehyde as a reducing agent (nanocomposite F), and formaldehyde in the presence of an alkaline medium resulting from the addition of Na2CO3 (nanocomposite FC), or NaOH (nanocomposite FO) to enhance the rate of reduction of the silver ions. The UV‐visible spectra showed the appearance of bands centered around 275, 286, and 274 nm for the nanocomposites F, FC, and FO, respectively, attributed to small silver nanoparticles (Ag‐NPs) with an average size less than 10 nm. Other bands centered around 405 and 470 nm for the nanocomposites F and FC, respectively, were attributed to large Ag‐NPs with an average size greater than 50 nm. The absence of large Ag‐NPs in the nanocomposites FO makes them as the materials of choice for the preparation of selective ultrasmall Ag‐NPs with an average size less than 3 nm. Furthermore, photoluminescence was observed upon blue excitation of the ultrasmall colloidal Ag‐NPs. Scanning electron microscopy images showed a good dispersion of the metallic Ag‐NPs in the polymer matrix. Moreover, X‐ray diffraction patterns showed peaks corresponding to the face‐centered‐cubic of the Ag‐NPs. The nature of the interaction between carbopol and Ag‐NPs was further studied by attenuated total reflectance‐Fourier transform infrared spectroscopy, and the mechanism of reduction of the silver ions was proposed. The antimicrobial activities of the CP‐Ag‐NCs were examined against Escherichia coli and Candida albicans microorganisms. The results demonstrate that the CP‐Ag‐NCs can provide new applications of these nanocomposites as efficient sensors and antimicrobial materials.  相似文献   

19.
A new method to prepare plasmonically active noble metal nanostructures on large surface area silicon nanowires (SiNWs) mediated by atomic layer deposition (ALD) technology has successfully been demonstrated for applications of surface‐enhanced Raman spectroscopy (SERS)‐based sensing. As host material for the plasmonically active nanostructures we use dense single‐crystalline SiNWs with diameters of less than 100 nm as obtained by a wet chemical etching method based on silver nitrate and hydrofluoric acid solutions. The SERS active metal nanoparticles/islands are made from silver (Ag) shells as deposited by autometallography on the core nanoislands made from platinum (Pt) that can easily be deposited by ALD in the form of nanoislands covering the SiNW surfaces in a controlled way. The density of the plasmonically inactive Pt islands as well as the thickness of noble metal Ag shell are two key factors determining the magnitude of the SERS signal enhancement and sensitivity of detection. The optimized Ag coated Pt islands on SiNWs exhibit great potential for ultrasensitive molecular sensing in terms of high SERS signal enhancement ability, good stability and reproducibility. The plasmonic activity of the core‐shell Pt//Ag system that will be experimentally realized in this paper as an example was demonstrated in numerical finite element simulations as well as experimentally in Raman measurements of SERS activity of a highly diluted model dye molecule. The morphology and structure of the core‐shell Pt//Ag nanoparticles on SiNW surfaces were investigated by scanning‐ and transmission electron microscopy. Optimized core–shell nanoparticle geometries for maximum Raman signal enhancement is discussed essentially based on the finite element modeling.  相似文献   

20.
This work is the first presentation of the synthesis of few‐layer graphene decorated with gold and silver nanoparticles (Gr–Au–Ag) by chemical vapor deposition over a catalytic system formed of bimetallic Au–Ag nanoclusters supported on MgO and with methane used as the source of carbon. The sheetlike morphology of the graphene nanostructures, with mean sizes in the range of hundreds of nanometers, was observed by high‐resolution electron microscopy. The distinctive feature found in all the samples was the regular rectangular or square shapes. This multi‐component organic–inorganic nanomaterial was used to modify a platinum substrate and subsequently employed for the detection of carbamazepine, an anti‐convulsion drug. UV/Vis spectroscopy revealed that a strong hypochromism occurred over time, after mixing solutions of graphene–Au–Ag with carbamazepine. This can be attributed to π–π stacking between the aromatic groups of the two compounds. Linear sweep voltammetry (LCV) provided evidence that the modified platinum substrate presented a significant electrocatalytic reaction toward the oxidation of carbamazepine. The intensity of the current was found to increase by up to 2.5 times, and the oxidation potential shifted from +1.5 to +1.35 V(Ag/AgCl) in comparison with the unmodified electrode. Electrochemical impedance spectroscopy (EIS) was further used to thoroughly assess the activity of the platinum electrode that was modified by the deposition of the Gr‐Au‐Ag composites in the presence of various concentrations of carbamazepine. The experimental EIS records were used for the generation of an equivalent electrical circuit, based on the charge‐transfer resistance (Rct), Warburg impedance (ZD), solution resistance (Rs), and a constant phase element (CPE) that characterizes the non‐ideal interface capacitive responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号