首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用Nd.YAG激光器三倍频、输出波长为=355nm的激光光解NO2分子,可产生NO分子.将NO分子通过共振增强多光子电离(REMPI resonance enhanced multiphoto ionization)及飞行时间(TOF time of flight)质谱技术,获得振转态分辨的NO(X^2Ⅱυ″J″)离子谱NOγ(0,0),7(0,1),7(1,1)。通过理论计算,可将NO离子带的P、R、Q支线进行标识。NO分子的离子信号强度与UV电离激光能量(λ≈226nm)之间关系能用二次方曲线很好拟合。它表明NO分子是通过(1 1)双光子吸收而电离。这些结果对NO分子的电离动力学提供了有益的信息。  相似文献   

2.
共振增强多光子电离及飞行时间质谱技术是一种具有高分辨率、高灵敏度的光谱研究技术。利用上述技术研究了由激光光解NO2产物-NO与原子O的离子谱,获得了振转态高度分辨的NO(X^2П,v″,J″)γ(0,0)γ(0,1)γ(1,1)带的离子谱以及自旋-轨道精细能级分辨的氧原子O(2P^3PJ^″=2,1,0)离子谱。氧原子O(2P^3PJ^″=2→3P^3PJ^″、2P^3PJ^″=1→3P^3PJ′、2P^3PJ″=0→3P^3PJ′)的离子信号位于紫外电离探测激光的波长分别为225.65nm,226.04nm,226.23nm。实验表明,共振增强多光子电离加飞行时间技术研究原子、分子光谱其灵敏度与分辨率远高于常用的激光感生荧光方法。所得到的NO分子与氧原子的离子谱及它们的离子信号对NO2分子光解及NO分子与氧原子的电离动力学研究提供了有益的实验信息。  相似文献   

3.
利用激光光解NO2 分子 ,通过共振增强多光子电离 (REMPIresonanceenhancedmultiphotoionization)及飞行时间 (TOFtimeofflight)质谱技术 ,获得了振转态分辨的NO(X2 Π ,υ″,J″)与自旋 轨道分辨的氧原子O(2P3PJ″ =2 ,1,0 )离子谱 NO分子与O原子的离子信号强度与UV电离激光能量之间的关系分别能用二次方和三次方曲线很好拟合 ,它表明 :光解产物NO分子和氧原子是分别通过 (1+1)和 (2 +1)多光子吸收过程而被电离的 由氧离子信号得到的氧原子基态三个自旋 轨道支能级布居比f1与f0 分别为 0 .5 4± 0 .0 9和 0 .2 0± 0 .0 4 ,这一比值与统计分布计算的值为 0 .6和 0 .2一致  相似文献   

4.
利用激光光解NO2分子,通过共振增强多光子电离(REMPI resonance enhanced multiphoto ionization)及飞行时间(TOF time of flight)质谱技术,获得了振转态分辨的NO(X2Π,υ″,J″)与自旋-轨道分辨的氧原子O(2P3PJ″=2,1,0)离子谱.NO分子与O原子的离子信号强度与UV电离激光能量之间的关系分别能用二次方和三次方曲线很好拟合,它表明:光解产物NO分子和氧原子是分别通过(1+1)和(2+1)多光子吸收过程而被电离的.由氧离子信号得到的氧原子基态三个自旋-轨道支能级布居比f1与f0分别为0.54±0.09和 0.20±0.04,这一比值与统计分布计算的值为0.6和0.2一致.  相似文献   

5.
用一束波长为360.55 nm的激光,通过N2O分子的(3+1)共振增强多光子电离过程制备纯净的母体离子N2O+X2Ⅱ3/2,1/2(000).用另一束可调谐激光将N2O+离子激发至预解离态A2Σ+,利用飞行时间质谱检测解离碎片NO+离子强度随光解光波长的变化,在278-328 nm波长范围内获得了光解碎片的激发(PHOFEX)谱.观测到了N2O+离子A2Σ+←X2Ⅱ电子跃迁较丰富的振动谱带.通过对PHOFEX光谱的标识,获得了A2∑+态较准确和全面的分子光谱常数.  相似文献   

6.
用一束波长为360.55nm的激光,通过N2O分子的(3+1)共振多光子电离(REMPI)过程制备纯净且布居完全处于X2Ⅱ(000)态的母体离子N2O+,然后用另一束波长在275-328nm范围内的可调谐激光将制备的N2O+离子激发至预解离电子态A2∑+.实验发现,由于解离碎片NO+所具有的一定的反冲速度,其TOF质谱峰明显比N2O+母体宽.通过分析NO+碎片TOF质谱峰形状,得到了解离产物的总平均平动能;通过考察随光解能量的变化,发现光解能量在32000cm-1附近约250cm-1的变化范围内,值由约8000cm-1突然减小至约1600cm-1.通过分析,在光解能量小于32000cm-1的区域,解离通道为NO+(X1∑+)+N(4S);而在光解能量大于32000cm-1的区域,另一个具有较高解离限的解离通道,NO+(X1∑+)+N(2D),开启并完全取代N(4S)通道成为解离的惟一通道.根据实验结果,对在所研究的光解能量范围内的N2O+离子A2∑+电子态预解离机理进行了探讨.  相似文献   

7.
用一束波长为360.55nm的激光,通过N2O分子的(3+1)共振多光子电离(REMPI)过程制备纯净且布居完全处于X2Π(000)态的母体离子N2O+,然后用另一束波长在275—328nm范围内的可调谐激光将制备的N2O+离子激发至预解离电子态A2Σ+.实验发现,由于解离碎片NO+所具有的一定的反冲速度,其TOF质谱峰明显比N2O+母体宽.通过分析NO+碎片TOF质谱峰形状,得到了解离产物的总平均平动能〈ET〉;通过考察〈ET〉随光解能量的变化,发现光解能量在32000cm-1附近约250cm-1的变化 关键词: N2O+离子A2Σ+态 TOF质谱峰 预解离机理  相似文献   

8.
用一束波长为 36 0 5 5nm的激光 ,通过N2 O分子的 (3 1 )共振多光子电离 (REMPI)过程制备纯净且布居完全处于X2 Π(0 0 0 )态的母体离子N2 O ,然后用另一束波长在 2 75— 32 8nm范围内的可调谐激光将制备的N2 O 离子激发至预解离电子态A2 Σ .实验发现 ,由于解离碎片NO 所具有的一定的反冲速度 ,其TOF质谱峰明显比N2 O 母体宽 .通过分析NO 碎片TOF质谱峰形状 ,得到了解离产物的总平均平动能〈ET〉 ;通过考察〈ET〉随光解能量的变化 ,发现光解能量在 32 0 0 0cm- 1 附近约 2 5 0cm- 1 的变化范围内 ,〈ET〉值由约 80 0 0cm- 1 突然减小至约 1 6 0 0cm- 1 .通过分析 ,在光解能量小于 32 0 0 0cm- 1 的区域 ,解离通道为NO (X1 Σ ) N(4 S) ;而在光解能量大于 32 0 0 0cm- 1 的区域 ,另一个具有较高解离限的解离通道 ,NO (X1 Σ ) N(2 D) ,开启并完全取代N(4 S)通道成为解离的惟一通道 .根据实验结果 ,对在所研究的光解能量范围内的N2 O 离子A2 Σ 电子态预解离机理进行了探讨  相似文献   

9.
利用激光光解NO2分子,通过共振增强多光子电离(REMPI resonance enhanced multiphoto ionization)及飞行时间(TOF time of flight)质谱技术,获得了振转态分辨的NO(XΠ,υ″,J″)与自旋-轨道分辨的氧原子O(2PJ″=2,1,0)离子谱.NO分子与O原子的离子信号强度与UV电离激光能量之间的关系分别能用二次方和三次方曲线很好拟合,它表明:光解产物NO分子和氧原子是分别通过(1+1)和(2+1)多光子吸收过程而被电离的.由氧离子信号得到的氧原子基态三个自旋-轨道支能级布居比f与f分别为0.54±0.09和 0.20±0.04,这一比值与统计分布计算的值为0.6和0.2一致.  相似文献   

10.
利用一束波长为360.55nm的激光,通过(3 1)共振多光子电离方法制备纯净的且处于X2Π1/2,3/2(000)态的N2O 离子,用另一束激光激发所制备的离子到第一电子激发态A2Σ 的不同振动能级,然后解离,通过检测解离碎片NO 强度随光解光波长的变化,得到了转动分辨的N2O 碎片激发谱.通过对光谱转动结构的拟合,获得了N2O 离子A2Σ 电子态一系列高振动能级的转动常数和自旋分裂常数.  相似文献   

11.
利用激光质谱法,采用355 nm及532 nm激光作为光源对丁酮分子进行了多光子电离解离研究,得到了2种波长下丁酮的多光子电离飞行时间质谱图主要有质荷比为1(H ),15(CH3 ),43(CH3CO )的质谱峰.532 nm质谱比较丰富,有较强的质荷比为45的信号,可以认为这是丁酮异构体电离解离得到的产物;同时探测到了质荷比为4,6,8的信号,可能是高价离子.355 nm质谱图相对简单.根据信号比例随激光能量的变化及主要的离子信号,得出了2种波长下主要的解离电离通道.  相似文献   

12.
利用激光质谱法,采用355 nm及532 nm激光作为光源对丁酮分子进行了多光子电离解离研究,得到了2种波长下丁酮的多光子电离飞行时间质谱图主要有质荷比为1(H ),15(CH3 ),43(CH3CO )的质谱峰.532 nm质谱比较丰富,有较强的质荷比为45的信号,可以认为这是丁酮异构体电离解离得到的产物;同时探测到了质荷比为4,6,8的信号,可能是高价离子.355 nm质谱图相对简单.根据信号比例随激光能量的变化及主要的离子信号,得出了2种波长下主要的解离电离通道.  相似文献   

13.
将荧光光谱和光声光谱两种互补的探测技术结合起来,从辐射和无辐射跃迁两个方面,分析了 532nm激光作用下,NO2分子的激发和弛豫过程.发现NO2分子在激光作用下,将跃迁至第一激发电子态.当样品气压较低时,受激NO2分子除辐射荧光外,可通过快速的内能转移过程实现在几个振转能级的再布居;随样品气压的升高,分子间碰撞加剧,受激NO2分子通过分子间的碰撞,实现在多个振转能级的再布居.激光布居能级的荧光辐射效率随样品气压的升高逐渐降低,而长波区域的荧光辐射及光声信号强度逐渐增强,说明在高样品气压条件下,受激NO2分子的弛豫过程除辐射荧光外,还存在很强的碰撞弛豫过程,在碰撞弛豫过程中受激NO2分子将振动能转化为热运动的平动能,引起温度升高而产生很强的声信号.  相似文献   

14.
利用第一性原理研究了NO分子对[(NO)_2]分子链、分子单层膜,Rh(111)表面上的(NO)_2分子单层膜和多层膜的原子结构.(NO)_2分子单体在虚拟Rh(111)表面自组装成两个稳定的分子链,(NO)_2分子平行有序排列,氧原子和氮原子都呈现(100)和(111)结构.在虚拟Rh(111)-(1×3~(1/2))上,1.00 ML(molecular layer)覆盖度时,(NO)_2分子自组装成两个稳定的分子单层膜(M1和M2),分子膜M1中N-N键与衬底的夹角为70°-90°;分子膜M2中N-N键平行衬底.在M2/Rh(111)中,(NO)_2分子可吸附于顶位、fcc空心位和hcp空心位,通过电荷转移可解释两个空心位的稳定性强于顶位.Rh(111)表面(NO)_2分子多层膜系统中,(NO)_2分子垂直吸附于两个空心位,第一层是分子膜M2,N-N键平行于衬底,第二层及以上都是分子膜M1,N-N键与衬底夹角为70°-90°,分子膜真空层为0.31 nm±0.02 nm.  相似文献   

15.
在射流气束条件下 ,利用第一束 4 83.2nm的电离激光使中性CS2 分子通过 (3+1)共振增强多光子电离 (REMPI)制备出纯净的CS2 + 分子离子 ;用第二束解离激光在 385~ 4 35nm扫描 ,由获得的光解离碎片激发(PHOFEX)谱研究了光解CS2 + 产生CS+ 的两种动力学途径 .当第一束电离激光和第二束解离激光在时间上有约6 0ns的延迟 (远大于激光脉宽约 5ns)时 ,光解CS2 + 母体离子产生CS+ 碎片离子有明显的阈值效应 ,由PHOFEX谱确定了CS+ 的绝热出现势 (5 .85 2± 0 .0 0 5 )eV (从CS2 + 的 X 2 Πg ,3 / 2 (0 ,0 ,0 )能级位置算起 ) ,测量了 4 72 0 0~5 0 4 0 0cm-1双光子能量范围内碎片离子的分支比CS+ /S+ (从 0逐渐增加到略大于 1) .提出了这种情况下CS2 +产生CS+ 碎片离子的 [1+1]共振增强多光子解离机理 :通过单光子激发产生CS2 + ( X 2 Πg)→CS2 + ( 2 Πu)跃迁、 和 X高振动能级耦合使得可以产生到CS2 + ( B2 Σ+ u)的单光子跃迁 ,再经由 B态与4Σ-和2 Σ-排斥态耦合使CS2 + 解离为CS+ (X2 Σ+ )和S(3 P) .但是 ,当电离激光和解离激光时间上重合时 ,不再能分辨出CS+ 的出现阈值 .这表明 ,除了存在着上述的产生CS+ 的 [1+1]共振增强多光子解离机理外 ,在激光波长长于 4 2 3.8nm时还存在着 [1+1+1’]、[1+1  相似文献   

16.
利用飞行时间质谱仪在超声射流冷却条件下探讨了532 nm激光作用下CH3I分子的多光子电离(MPI)解离过程和机制,得到了分子的飞行时间质谱,质谱中包含较强的I 、CH3 离子信号和较弱的CH3I 、CHn (n≤2)、C 、H 离子信号.不同激光能量下的质谱信号在排布上相似,但在强度上有差别.在532 nm激光作用下CH3I分子的多光子电离包括两个过程:一是CH3I分子由双光子激发到A带解离,生成I原子和CH3基团,然后再吸收光子实现中性碎片电离;另一通道是CH3I分子由三光子共振激发到里德堡C态,处于激发态的母体分子继续吸收两个光子电离形成母体离子,碎片离子可由母体离子解离形成.  相似文献   

17.
用一束波长为360.55nm的激光,通过N2O分子的(3 1)共振增强多光子电离过程制备纯净的母体离子N2O^ X^2Π3/2,1/2(000).用另一束可调谐激光将N2O^ 离子激发至预解离态A^2Σ^ ,利用飞行时间质谱检测解离碎片NO^ 离子强度随光解光波长的变化,在278—328nm波长范围内获得了光解碎片的激发(PHOFEX)谱.观测到了N2O^ 离子A^2Σ^ ←X^2Π电子跃迁较丰富的振动谱带.通过对PHOFEX光谱的标识,获得了A^2Σ^态较准确和全面的分子光谱常数.  相似文献   

18.
以皮秒Nd:YAG激光器抽运光学参变发生/放大器做激发源,得到了NO分子在490~580 nm波长范围内通过C2Ⅱ态共振增强的多光子离化谱,离化谱由有规则的谱线序列组成.将理论计算的峰值位置与实验结果进行比较,确定了离化通道为:NO(X2Ⅱ)3hv→NO(C2Ⅱ)-2hv(or hv)→NO++e,离化信号强度随激光强度的近五次方变化关系进一步验证了此结论.分析讨论了谱线强度的分布不符合夫兰克-康登原理的可能原因.根据谱线峰值位置,利用最小二乘法拟合获得NO分子C2Ⅱ态振动常数ω′e=(2354.9±6.4)cm-1ω′eX′e=(14.7±2.5)cm-1及平衡位置的力常数k=(2.44±0.08)×103N@m-1.结果可为用激光离化光谱技术探测大气污染物NO分子提供参考.  相似文献   

19.
高光珍  胡波 《光子学报》2008,37(8):1603-1607
YAG脉冲激光倍频输出的532 nm和355 nm激光对脉冲分子束超声膨胀产生的中性乙醇团簇进行了电离,通过飞行时间质谱测量发现355 nm激光可对其实现3光子共振电离,观测到质子化的团簇离子序列(CH3CH2OH)nH+和 (CH3CH2OH)n (H2O)H+,其中(CH3CH2OH)3H+具有幻数结构.结合密度泛函理论中的B3LYP杂化方法加6-31G++基组水平上的计算,对质子化乙醇离子的结构及稳定性进行了推测,并讨论了乙醇团簇电离后的质子转移反应生成质子化团簇的机理.而对于另一个水合质子化团簇序列(CH3CH2OH)n(H2O)H+,由于溶剂化的影响只在较大尺寸时才出现.  相似文献   

20.
Fe(CO)5双色共振增强多光子电离研究   总被引:5,自引:0,他引:5  
李书涛  刘厚祥 《光学学报》1990,10(7):10-617
利用超声分子束、强激光多光子电离和飞行时间质谱探测装置研究了Fe(CO)_5分子在355nm、532nm和355nm+532nm单、双色激光作用下的多光子电离质谱.实验结果证明了双色激光的共振增强电离作用.由飞行时间质谱的展宽峰型结构估算了Fe(CO)_5等分子的光解离寿命与Fe~+和Fe(CO)_5离子分子反应截面.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号