首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Szabó Z  Grenthe I 《Inorganic chemistry》2000,39(22):5036-5043
Equilibria, structures, and ligand-exchange dynamics in binary and ternary U(VI)-L-F- systems, where L is glycolate, alpha-hydroxyisobutyrate, or glycine, have been investigated in 1.0 M NaClO4 by potentiometry and 1H, 17O, and 19F NMR spectroscopy. L may be bonded in two ways: either through the carboxylate end or by the formation of a chelate. In the glycolate system, the chelate is formed by proton dissociation from the alpha-hydroxy group at around pH 3, indicating a dramatic increase, a factor of at least 10(13), of its dissociation constant on coordination to uranium(VI). The L exchange in carboxylate-coordinated UO2LF3(2-) follows an Eigen-Wilkins mechanism, as previously found for acetate. The water exchange rate, k(aq) = 4.2 x 10(5) s(-1), is in excellent agreement with the value determined earlier for UO2(2+)(aq). The ligand-exchange dynamics of UO2(O-CH2-COO)2F3- and the activation parameters for the fluoride exchange in D2O (k(obs) = 12 s(-1), deltaH(double dagger) = 45.8 +/- 2.2 kJ mo(-1), and deltaS(double dagger) = -55.8 +/- 3.6 J K(-1) mol(-1)) are very similar to those in the corresponding oxalate complex, with two parallel pathways, one for fluoride and one for the alpha-oxocarboxylate. The same is true for the L exchange in UO2(O-CH2-COO)2(2-) and UO2(oxalate)2(2-). The exchange of alpha-oxocarboxylate takes place by a proton-assisted chelate ring opening followed by dissociation. Because we cannot decide if there is also a parallel H+-independent pathway, only an upper limit for the rate constant, k1 < 1.2 s(-1), can be given. This value is smaller than those in previously studied ternary systems. Equilibria and dynamics in the ternary uranium(VI)-glycine-fluoride system, investigated by 19F NMR spectroscopy, indicate the formation of one major ternary complex, UO2LF3(2-), and one binary complex, UO2L2 (L = H2N-CH2COO-), with chelate-bonded glycine; log beta(9) = 13.80 +/- 0.05 for the equilibrium UO2(2+) + H2N-CH2COO- + 3F- = UO2(H2N-CH2COO)F3(2-) and log beta(11) = 13.0 +/- 0.05 for the reaction UO2(2+) + 2H2N-CH2COO- = UO2(H2N-CH2COO)2. The glycinate exchange consists of a ring opening followed by proton-assisted steps. The rate of ring opening, 139 +/- 9 s(-1), is independent of both the concentration of H+ and the solvent, H2O or D2O.  相似文献   

2.
The reaction mechanism for the exchange of fluoride in UO(2)F(5)(3-) and UO(2)F(4)(H(2)O)(2-) has been investigated experimentally using (19)F NMR spectroscopy at -5 degrees C, by studying the line broadening of the free fluoride, UO(2)F(4)(2-)(aq) and UO(2)F(5)(3-), and theoretically using quantum chemical methods to calculate the activation energy for different pathways. The new experimental data allowed us to make a more detailed study of chemical equilibria and exchange mechanisms than in previous studies. From the integrals of the different individual peaks in the new NMR spectra, we obtained the stepwise stability constant K(5) = 0.60 +/- 0.05 M(-1) for UO(2)F(5)(3-). The theoretical results indicate that the fluoride exchange pathway of lowest activation energy, 71 kJ/mol, in UO(2)F(5)(3-) is water assisted. The pure dissociative pathway has an activation energy of 75 kJ/mol, while the associative mechanism can be excluded as there is no stable UO(2)F(6)(4-) intermediate. The quantum chemical calculations have been made at the SCF/MP2 levels, using a conductor-like polarizable continuum model (CPCM) to describe the solvent. The effects of different model assumptions on the activation energy have been studied. The activation energy is not strongly dependent on the cavity size or on interactions between the complex and Na(+) counterions. However, the solvation of the complex and the leaving fluoride results in substantial changes in the activation energy. The mechanism for water exchange in UO(2)F(4)(H(2)O)(2-) has also been studied. We could eliminate the associative mechanism, the dissociative mechanism had the lowest activation energy, 39 kJ/mol, while the interchange mechanism has an activation energy that is approximately 50 kJ/mol higher.  相似文献   

3.
A careful reinvestigation by high-field 19F NMR (470 MHz) spectroscopy has been made of the Al3+/F- system in aqueous solution under carefully controlled conditions of pH, concentration, ionic strength (I), and temperature. The 19F NMR spectra show five distinct signals at 278 K and I = 0.6 M (TMACl) which have been attributed to the complexes AlFi(3-i)+(aq) with i < or = 5. There was no need to invoke AlFi(OH)j(3-i-j)+ mixed complexes in the model under our experimental conditions (pH < or = 6.5), nor was any evidence obtained for the formation of AlF6(3-)(aq) at very high ratios of F-/Al3+. The stepwise equilibrium constants obtained for the complexes by integration of the 19F signals are in good agreement with literature data given the differences in medium and temperature. In I = 0.6 M TMACl at 278 K and in I = 3 M KCl at 298 K the log Ki values are 6.42, 5.41, 3.99, 2.50, and 0.84 (for species i = 1-5) and 6.35, 5.25, and 4.11 (for species i = 1-3), respectively. Disappearance of the 19F NMR signals under certain conditions was shown to be due to precipitation. Certain 19F NMR signals exhibit temperature- and concentration-dependent exchange broadening. Detailed line shape analysis of the spectra and magnetization transfer measurements indicate that the kinetics are dominated by F- exchange rather than complex formation. The detected reactions and their rate constants are AlF2(2+) + *F- reversible AlF*F2+ + F- (k02 = (1.8 +/- 0.3) x 10(6) M-1 s-1), AlF3(0) + *F- reversible AlF2*F0 + F- (k03 = (3.9 +/- 0.9) x 10(6) M-1 s-1), and AlF3(0) + H*F reversible AlF2*F0 + HF (kH03 = (6.6 +/- 0.5) x 10(4) M-1 s-1). The rates of these exchange reactions increase markedly with increasing F- substitution. Thus, the reactions of AlF2+(aq) were too inert to be detected even on the T1 NMR time scale, while some of the reactions of AlF3(0)(aq) were fast, causing large line broadening. The ligand exchange appears to follow an associative interchange mechanism. The cis-trans isomerization of AlF2+(aq), consistent with octahedral geometry for that complex, is slowed sufficiently to be observed at temperatures around 270 K. Difference between the Al3+/F- system and the much studied Al3+/OH- system are briefly commented on.  相似文献   

4.
The effect of employing hydrofluoric acid as a mineraliser in the formation of organically templated uranium sulfate materials has been studied. Variable amounts of HF((aq)) were added to a series of reaction gels in which all other reactant concentrations were invariant, resulting in the formation of three different phases, depending upon the fluoride concentration. Two of these phases are novel; [N(2)C(4)H(14)][UO(2)(H(2)O)(SO(4))(2)] is a new templated uranium sulfate, containing anionic [UO(2)(H(2)O)(SO(4))(2)](2-) chains that hydrogen bond to one-another forming pseudo-layers, and [N(2)C(4)H(14)][UO(2)F(SO(4))](2) is the first example of a templated uranium sulfate fluoride, which consists of uranium fluoride chains linked by sulfate groups to form [UO(2)F(SO(4))](-) layers. The role of F(-) in these reactions is two-fold; it acts as a mineraliser when present in small concentrations, while it is incorporated into the reaction product when present in larger mole fractions. Both of the new materials have been characterised using a range of physical techniques including single crystal X-ray structure analysis.  相似文献   

5.
Structural isomers of [UO(2)(oxalate)(3)](4-), [UO(2)(oxalate)F(3)](3-), [UO(2)(oxalate)(2)F](3-), and [UO(2)(oxalate)(2)(H(2)O)](2-) have been studied by using EXAFS and quantum chemical ab initio methods. Theoretical structures and their relative energies were determined in the gas phase and in water using the CPCM model. The most stable isomers according to the quantum chemical calculations have geometries consistent with the EXAFS data, and the difference between measured and calculated bond distances is generally less than 0.05 A. The complex [UO(2)(oxalate)(3)](4-) contains two oxalate ligands forming five-membered chelate rings, while the third is bonded end-on to a single carboxylate oxygen. The most stable isomer of the other two complexes also contains the same type of chelate-bonded oxalate ligands. The activation energy for ring opening in [UO(2)(oxalate)F(3)](3-), deltaU++ = 63 kJ/mol, is in fair agreement with the experimental activation enthalpy, deltaH++ = 45 +/- 5 kJ/mol, for different [UO(2)(picolinate)F(3)](2-) complexes, indicating similar ring-opening mechanisms. No direct experimental information is available on intramolecular exchange in [UO(3)(oxalate)(3)](4-). The theoretical results indicate that it takes place via the tris-chelated intermediate with an activation energy of deltaU++ = 38 kJ/mol; the other pathways involve multiple steps and have much higher activation energies. The geometries and energies of dioxouranium(VI) complexes in the gas phase and solvent models differ slightly, with differences in bond distance and energy of typically less than 0.06 A and 10 kJ/mol, respectively. However, there might be a significant difference in the distance between uranium and the leaving/entering group in the transition state, resulting in a systematic error when the gas-phase geometry is used to estimate the activation energy in solution. This systematic error is about 10 kJ/mol and tends to cancel when comparing different pathways.  相似文献   

6.
The formation of ternary UO2(2+)-(OH-)-SO4(2-) complexes has been studied at 25 degrees C in 3 M NaClO4 ionic medium by measurements with a glass electrode. The solutions had uranium concentrations between 0.3 and 30 mM, sulfate between 20 and 200 mM, and 1.66 < or = [SO4(2-)]/[U(VI)] < or = 300. The hydrogen ion concentration ranged from 10(-3) M to incipient precipitation of basic sulfates. This occurred, depending on the metal concentration, at [H+] between 10(-4) and 10(-5.3) M. In the interpretation of the data the stabilities of binary complexes were assumed from independent sources. The data could be explained with the mixed complexes and equilibria (beta(pqr)(3sigma) refers to pUO2(2+) + qH2O + rSO4(2-) <==> (UO2)p(OH)q(SO4)r(2p-q-2r) + qH+): logbeta222 = -2.94 +/- 0.03, logbeta341 = -9.82 +/- 0.06, logbeta211 = -0.30 +/- 0.09, logbeta212 = 1.09 +/- 0.09, logbeta351 = -15.04 +/- 0.09 and logbeta462 = -14.40 +/- 0.06. The fit could be improved by including UO2OH+ with logbeta110 = -5.1 +/- 0.1. The identity of the minor species remains, however, an open question.  相似文献   

7.
Reaction of [UO(2)(NO(3))(2)] with the hydroxy ketones 3-hydroxy-2-methyl-4-pyrone (Hma) and 3-hydroxy-1,2-dimethyl-4(1H)-pyridone (Hdpp) in aqueous acidic solutions (pH approximately 3) yields the compounds [UO(2)(ma)(2)(H(2)O)].H(2)O (1.H(2)O) and [UO(2)(dpp)(Hdpp)(2)(H(2)O)]ClO(4) (2), respectively. X-ray diffraction shows that the geometry around the metal ion in both complexes is pentagonal bipyramid. Uranium ion in the crystal structure of 1 were found to be ligated with two chelate ma(-) groups and one unidentate H(2)O molecule (C coordination mode) at the equatorial plane, while in 2 with two single-bonded Hdpp there were one chelate dpp(-) and one H(2)O molecule (P coordination mode). Crystal data (Mo Kalpha; 293(2) K) are as follows: (1) monoclinic space group C2/c, a = 14.561(7) A, b = 14.871(9) A, c = 7.250(4) A, beta = 95.40(4) degrees , Z = 4; (2) monoclinic space group P2(1)/c, a = 19.080(2) A, b = 9.834(1) A, c = 15.156(2) A, beta = 104.62(1) degrees , Z = 4. (1)H NMR measurements indicate that complex 2 retains its structure in CD(3)CN solution; however, in DMSO-d(6) both complexes adopt the C structure. Line-shape analysis for the (1)H NMR peaks of 2 at various temperatures shows a fast intramolecular exchange process between the chelate dpp(-) and one of the single bonded Hdpp ligands and one slower exchange between all three ligands. The activation parameters and the decrease of the exchange rate by replacing unidentate ligand with DMSO indicate the dissociation of the unidentate ligand as the rate-determining step for the former exchange. Density functional calculations (DFT) support this mechanism and give a quantitative interpretation of the electronic structure of the two ligands and the geometries adopted by the complexes.  相似文献   

8.
This study consists of two parts: The first part comprised an experimental determination of the kinetic parameters for the exchange of water between UO2(H2O)5(2+) and bulk water, including an ab initio study at the SCF and MP2 levels of the geometry of UO2(H2O)5(2+), UO2(H2O)4(2+), and UO2(H2O)6(2+) and the thermodynamics of their reactions with water. In the second part we made an experimental study of the rate of water exchange in uranyl complexes and investigated how this might depend on inter- and intramolecular hydrogen bond interactions. The experimental studies, made by using 17O NMR, with Tb3+ as a chemical shift reagent, gave the following kinetic parameters at 25 degrees C: kex = (1.30 +/- 0.05) x 10(6) s(-1); deltaH(not equal to) = 26.1 +/- 1.4 kJ/mol; deltaS(not equal to) = -40 +/- 5J J/(K mol). Additional mechanistic indicators were obtained from the known coordination geometry of U(VI) complexes with unidentate ligands and from the theoretical calculations. A survey of the literature shows that there are no known isolated complexes of UO2(2+) with unidentate ligands which have a coordination number larger than 5. This was corroborated by quantum chemical calculations which showed that the energy gains by binding an additional water to UO2(H2O)4(2+) and UO2(H2O)5(2+) are 29.8 and -2.4 kcal/mol, respectively. A comparison of the change in deltaU for the reactions UO2(H2O)5(2+)--> UO2(H2O)4(2+) + H2O and UO2(H2O)5(2+) + H2O --> UO2(H2O)6(2+) indicates that the thermodynamics favors the second (associative) reaction in gas phase at 0 K, while the thermodynamics of water transfer between the first and second coordination spheres, UO2(H2O)5(2+) --> UO2(H2O)4(H2O)2+ and UO2(H2O)5(H2O)2+ --> UO2(H2O)6(2+), favors the first (dissociative) reaction. The energy difference between the associative and dissociative reactions is small, and solvation has to be included in ab initio models in order to allow quantitative comparisons between experimental data and theory. Theoretical calculations of the activation energy were not possible because of the excessive computing time required. On the basis of theoretical and experimental studies, we suggest that the water exchange in UO2(H2O)5(2+) follows a dissociative interchange mechanism. The rates of exchange of water in UO2(oxalate)F(H2O)2- (and UO2(oxalate)F2(H2O)2- studied previously) are much slower than in the aqua ion, kex = 1.6 x 10(4) s(-1), an effect which we assign to hydrogen bonding involving coordinated water and fluoride. The kinetic parameters for the exchange of water in UO2(H2O)52+ and quenching of photo excited *UO2(H2O)5(2+) are very near the same, indicating similar mechanisms.  相似文献   

9.
The accuracy of quantum chemical predictions of structures and thermodynamic data for metal complexes depends both on the quantum chemical methods and the chemical models used. A thermodynamic analogue of the Eigen-Wilkins mechanism for ligand substitution reactions (Model A) turns out to be sufficiently simple to catch the essential chemistry of complex formation reactions and allows quantum chemical calculations at the ab initio level of thermodynamic quantities both in gas phase and solution; the latter by using the conductor-like polarizable continuum (CPCM) model. Model A describes the complex formation as a two-step reaction: 1. [M(H2O)x](aq) + L(aq) <==>[M(H2O)x], L(aq); 2. [M(H2O)x], L(aq) <==>[M(H2O)(x-1)L],(H2O)(aq). The first step, the formation of an outer-sphere complex is described using the Fuoss equation and the second, the intramolecular exchange between an entering ligand from the second and water in the first coordination shell, using quantum chemical methods. The thermodynamic quantities for this model were compared to those for the reaction: [M(H2O)x](aq) + L(aq) <==>[M(H2O)(x-1)L](aq) + (H2O)(aq) (Model B), as calculated for each reactant and product separately. The models were tested using complex formation between Zn(2+) and ammonia, methylamine, and ethylenediamine, and complex formation and chelate ring closure reactions in binary and ternary UO(2)(2+)-oxalate systems. The results show that the Gibbs energy of reaction for Model A are not strongly dependent on the number of water ligands and the structure of the second coordination sphere; it provides a much more precise estimate of the thermodynamics of complex formation reactions in solution than that obtained from Model B. The agreement between the experimental and calculated data for the formation of Zn(NH(3))(2+)(aq) and Zn(NH(3))(2)(2+)(aq) is better than 8 kJ/mol for the former, as compared to 30 kJ/mol or larger, for the latter. The Gibbs energy of reaction obtained for the UO(2)(2+) oxalate systems using model B differs between 80 and 130 kJ/mol from the experimental results, whereas the agreement with Model A is better. The errors in the quantum chemical estimates of the entropy and enthalpy of reaction are somewhat larger than those for the Gibbs energy, but still in fair agreement with experiments; adding water molecules in the second coordination sphere improves the agreement significantly. Reasons for the different performance of the two models are discussed. The quantum chemical data were used to discuss the microscopic basis of experimental enthalpy and entropy data, to determine the enthalpy and entropy contributions in chelate ring closure reactions and to discuss the origin of the so-called "chelate effect". Contrary to many earlier suggestions, this is not even in the gas phase, a result of changes in translation entropy contributions. There is no simple explanation of the high stability of chelate complexes; it is a result of both enthalpy and entropy contributions that vary from one system to the other.  相似文献   

10.
Mn2+ has five unpaired d-electrons, a long electronic relaxation time, and labile water exchange, all of which make it an attractive candidate for contrast agent application in medical magnetic resonance imaging. In the quest for stable and nonlabile Mn2+ complexes, we explored a novel dimeric triazacyclononane-based ligand bearing carboxylate functional groups, H4ENOTA. The protonation constants of the ligand and the stability constants of the complexes formed with some endogenously important metals (Ca2+, Cu2+, Zn2+), as well as with Mn2+ and Ce3+, have been assessed by NMR methods, potentiometry, and UV-vis spectrophotometry. Overall, the thermodynamic stability of the complexes is lower as compared to that of the corresponding NOTA analogues (H3NOTA, 1,4,7-triaazacyclononane-1,4,7-triacetic acid). The crystal structure of Mn2(ENOTA)(H2O) x 5H2O contains two six-coordinated Mn2+, in addition to the three amine nitrogens and the two oxygens from the pendent monodentate carboxylate groups, and one water (Mn2) or one bridging carboxylate oxygen (Mn1) completes the coordination sphere of the metal ion. In an aqueous solution, this bridging carboxylate is replaced by a water molecule, as evidenced by the 17O chemical shifts and proton relaxivity data that point to monohydration for both metal ions in the dinuclear complex. A variable-temperature and -pressure 17O NMR study has been performed on [Mn2(ENOTA)(H2O)2] to assess the rate and, for the first time on a Mn2+ chelate, also the mechanism of the water exchange. The inner sphere water is slightly more labile in [Mn2(ENOTA)(H2O)2] (k298ex = 5.5 x 107 s-1) than in the aqua ion (2.1 x 107 s-1, Merbach, A. E.; et al. Inorg. Chem. 1980, 19, 3696). The water exchange proceeds via an almost limiting associative mechanism, as evidenced by the large negative activation volume (deltaV = -10.7 cm3 mol-1). The proton relaxivities measured on [Mn2(ENOTA)(H2O)2] show a low-field dispersion at approximately 0.1 MHz arising from a contact interaction between the MnII electron spin and the water proton nuclear spins.  相似文献   

11.
A recent report claims to have prepared [18F]XeF2 by exchange between a large stoichiometric excess of XeF2 and no-carrier-added 18F-, as salts of the [2,2,2-crypt-M+] (M = K or Cs) cations, in CH2Cl2 or CHCl3 solvents at room temperature. Attempts to repeat this work have proven unsuccessful and have led to a critical reinvestigation of chemical exchange between fluoride ion, in the form of anhydrous [N(CH3)4][F] and [2,2,2-crypt-K][F], and XeF2 in dry CH2Cl2 and CH3CN solvents. It was shown, by use of 19F and 1H NMR spectroscopies, that [2,2,2-crypt-K][F] rapidly reacts with CH3CN solvent to form HF2-, and with CH2Cl2 solvent to form HF2-, CH2ClF, and CH2F2 at room temperature. Moreover, XeF2 rapidly oxidizes 2,2,2-crypt in CH2Cl2 solvent at room temperature to form HF and HF2-. Thus, the exchange between XeF2 and no-carrier-added 18F- reported in the prior work arises from exchange between XeF2 and HF/HF2-, and does not involve fluoride ion. However, naked fluoride ion has been shown to undergo exchange with XeF2 under rigorously anhydrous and HF-free conditions. A two-dimensional 19F-19F EXSY NMR study demonstrated that [N(CH3)4][F] exchanges with XeF2 in CH3CN solvent, but exchange of HF2- with either XeF2 or F- is not detectable under these conditions. The exchange between XeF2 and F- is postulated to proceed by the formation of XeF3- as the exchange intermediate.  相似文献   

12.
Szabó and Grenthe (Inorg. Chem. 2007, 46, 9372-9378) suggested from NMR spectroscopy that the "yl"-oxygen exchange in dioxo uranium(VI) ion in acidic solution occurs via an OH-bridged binuclear complex (UO(2))(2)(μ-OH)(2)(2+). Here, an "yl"-oxygen exchange pathway involving the (UO(2))(2)(μ-OH)(2)(2+) is studied by B3LYP density functional theory calculations. The oxygen exchange takes place via an intramolecular proton shuttle between the oxygen atoms in (UO(2))(2)(μ-OH)(2)(H(2)O)(6)(2+). The direct proton transfer from the hydroxo bridge or from the coordinating water to the "yl"-oxygen in (UO(2))(2)(μ-OH)(2)(H(2)O)(6)(2+) appears to be negligible because of an exceedingly high activation barrier (~170 kJ mol(-1)). The exchange mechanism in (UO(2))(2)(μ-OH)(2)(H(2)O)(6)(2+) can be described by a multistep pathway that leads to the formation of an oxo bridge between two uranyl(VI) centers (U-O(yl)-U bridge). The activation enthalpy Δ(?)H of the reaction obtained at the B3LYP level is 94.7 kJ mol(-1) and is somewhat larger than the experimental value of 80 ± 14 kJ mol(-1). However, the discrepancy between theory and experiment is at the acceptable level. The formation of an oxo bridge between the two uranyl(VI) centers was found to be the key step in proton shuttling, indicating that uranyl(VI) complexes with a stable oxo bridge (such as trinuclear (UO(2))(3)(μ(3)-O)(OH)(3)(+)) may have even faster "yl"-oxygen exchange rates than (UO(2))(2)(μ-OH)(2)(2+).  相似文献   

13.
In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.  相似文献   

14.
Keeping in view the chemotherapeutic of the sulfa-drugs, Schiff base namely 2-thiophene carboxaldehyde-sulfametrole (HL) and its tri-positive and di-positive metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA and DrTG). The low molar conductance values suggest the non-electrolytic nature of these complexes. IR spectra show that HL is coordinated to the metal ions in a tetradentate manner through hetero five-membered ring-S and azomethine-N, enolic sulfonamide-OH and thiadiazole-N, respectively. Zn(II), Cd(II) and UO2(II) complexes are found to be diamagnetic (as expected). The proposed general formulae of the prepared complexes are [M2X4(HL)(H2O)4] (where M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X=Cl, [Fe2Cl6(HL)(H2O)2], [(FeSO4)2(HL)(H2O)4] and [(UO2)2(HL) (NO3)4].H2O. The thermal behaviour of these chelates shows that the hydrated complexes loss water of hydration in first step in case of uranium complexes followed loss coordinated water followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as DeltaE*, DeltaH*, DeltaS*, and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The antimicrobial activity of the obtained products was performed using Chloramphenicol and Grisofluvine as standards, indicate that in some cases metallation increase activity than the ligand.  相似文献   

15.
The ability of templated uranium sulfate fluorides to adopt diverse inorganic architectures is demonstrated in six novel materials. The inorganic structures present in [N2C6H16][UO2F2(SO4)](USFO-2), [N2C6H16][UO2F(SO4)]2(USFO-3), [N2C3H12][UO2F(SO4)]2.H2O (USFO-4), [N2C5H14][UO2F(H2O)(SO4]2(USFO-5), [N2C6H18]2[UO2F(SO4)]4.H2O (USFO-6) and [N2C3H12][UO2F(SO4)]2.H2O (USFO-7) range from infinite chains to five different layer topologies. The chain, and two of the five layers, have unprecedented structure types. These compounds illustrate the structural diversity within this new family of materials, arising from the varied coordination of the U6+ centres. Each material was synthesised under hydrothermal conditions, through reaction of uranyl acetate, sulfuric acid, HF(aq), water, and the respective organic template.  相似文献   

16.
The rates and mechanisms of the electron self-exchange between U(V) and U(VI) in solution have been studied with quantum chemical methods. Both outer-sphere and inner-sphere mechanisms have been investigated; the former for the aqua ions, the latter for binuclear complexes containing hydroxide, fluoride, and carbonate as bridging ligand. The calculated rate constant for the self-exchange reaction UO(2)(+)(aq) + UO(2)(2+)(aq) <=>UO(2)(2+)(aq) + UO(2)(+)(aq), at 25 degrees C, is k = 26 M(-1) s(-1). The lower limit of the rate of electron transfer in the inner-sphere complexes is estimated to be in the range 2 x 10(4) to 4 x 10(6) M(-1) s(-1), indicating that the rate for the overall exchange reaction may be determined by the rate of formation and dissociation of the binuclear complex. The activation energy for the outer-sphere model calculated from the Marcus model is nearly the same as that obtained by a direct calculation of the precursor- and transition-state energy. A simple model with one water ligand is shown to recover 60% of the reorganization energy. This finding is important because it indicates the possibility to carry out theoretical studies of electron-transfer reactions involving M(3+) and M(4+) actinide species that have eight or nine water ligands in the first coordination sphere.  相似文献   

17.
A new organically templated layered uranium phosphate fluoride, [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][(UO(2))(2)F(2)(HPO(4))(2)] has been synthesized by hydrothermal reaction of UO(3), H(3)PO(4), HF, and (CH(3))(2)NCH(2)CH(2)N(CH(3))(2) at 140 degrees C. [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][(UO(2))(2)F(2)(HPO(4))(2)] has a layered crystal structure consisting of seven-coordinated UO(5)F(2) pentagonal bipyramids and four-coordinated HPO(4) tetrahedra. Each anionic layer containing three-, four-, and six-membered rings is separated by [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)](2+) cations. The [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)](2+) cations may be readily exchanged with the M(2+) ions (M = Ba, Sr and Ca) in water to give high crystalline AE(UO(2))(2)(PO(4))(2).6H(2)O (AE = Ca, Sr, Ba).  相似文献   

18.
Reactions of OsO4 with HSR (R=C6F5, C6F4H-4,) in refluxing ethanol afford [Os(SC6F5)3(SC6F4(SC6F5)-2)] (1) and [Os(SC6F4H-4)3(SC6F3H-4-(SC6F4H-4)-2)] (2), which involve the rupture of C-F bonds. At room temperature, the compound [Os(SC6F5)3(PMe2Ph)2] or [Os(SC6F5)4(PMe2Ph)] reacts with KOH(aq) in acetone, giving rise to [ Os(SC6F5)(SC6F4(SC6F4O-2)-2)(PMe2Ph)2] (3), through a process involving the rupture of two C-F bonds, while the compound [Os(SC6F4H)4(PPh3)] reacts with KOH(aq) in acetone to afford [Os(SC6F4H-4)2(SC6F3H-4-O-2)(PPh3)] (4), which also implies a C-F bond cleavage. Single-crystal X-ray diffraction studies of 1, 2, and 4 indicate that these compounds include five-coordinated metal ions in essentially trigonal-bipyramidal geometries, whereas these studies on the paramagnetic compound 3 show a six-coordinated osmium center in a distorted octahedral geometry. 19F, 1H, 31P{1H}, and COSY 19F-19F NMR studies for the diamagnetic 1, 2, and 4 compounds, including variable-temperature 19F NMR experiments, showed that these molecules are fluxional. Some of the activation parameters for these dynamic processes have been determined.  相似文献   

19.
The equilibrium and structure of the complex formed by Al(III) and ethylenediamine-N,N'-bis(3-hydroxy-2-propionate) (EDBHP2-) have been studied using pH-potentiometry, 1H and 27Al NMR, ESI MS and single crystal X-ray diffraction methods. The EDBHP ligand is a strong Al-binder in aqueous solution for pH between 4 and 8 and for c(Al) = c(EDBHP)> or = 0.1 mmol dm(-3). The dominating complex identified by ESI MS and potentiometry is a neutral dimer, Al2L2(OH)2, with logbeta(22-2) = 14.16 +/- 0.03. In the solid Al2(EDBHP)2(OH)2.2H2O the Al(III) ions are connected through a double hydroxo bridge. Both four-dentate organic ligands are coordinated terminally through two carboxylate groups and two N-donors forming three five-membered chelate rings. The hydroxyl groups of the ligand EDBHP remain protonated and are not coordinated to the aluminium ions. The structure and composition of the dimer are very likely the same in solution and the solid state.  相似文献   

20.
Some binary and ternary novel complexes of dioxouranium(VI) with 8-hydroxy-7-quinolinecarboxaldehyde (OXH) have been prepared and characterized by elemental analyses, magnetic susceptibility measurements and spectral studies. Coordination effects on the vibrational spectra of the ligands have been investigated. The amine exchange reactions of coordinated Schiff bases in these complexes have been also studied, which reveal symmetrical tetradentate Schiff base complexes. Metal exchange reaction of dioxouranium(VI) complexes was obtained when reacted with tetradentate Schiff base complexes of Cu(II) with ZrCl(4)/UO(2)(CH(3)COO)(2) giving heterobinuclear complexes. Magnetic, electronic and IR spectral data suggest the configurations of distorted square planar ligand field copper(II) complexes. The ligands behave as bi-(O,O) and tetradentate (N(2),O(2)) donors. El-Sonbati equation has been used to evaluate the symmetric stretching frequency from which the F(U-O) and F(UO,UO)(-) were calculated. The bond distances of these complexes were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号