首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 This paper presents an efficient technique for the characterization of thermal transport properties in turbulent flows. The method is based on the temperature dependence of fluorescence, induced by laser radiation, of an organic dye. The laser-induced fluorescence technique is combined with 2D laser Doppler anemometry, in order to measure in the same sample volume simultaneously and instantaneously the temperature and velocity. The technique is demonstrated on a turbulent heated round jet: the mean and fluctuating dynamic and thermal fields are investigated, and the temperature-velocity cross-correlations are determined in order to characterize the turbulent diffusivity and the turbulent Prandtl number. Received: 30 October 1997/Accepted: 14 July 1998  相似文献   

2.
 An experimental technique for the measurement of the local slip velocity of spherical bubbles is reported. It is based on the measurement of the local liquid velocity by an electrodiffusional method, and the bubble velocity by a specially adapted LDA (Laser Doppler anemometer) with a short measuring volume. The bubble velocity is measured taking into account the shift between the bubble centre and the centre of the LDA measuring volume. The slip velocity is obtained by subtracting the liquid velocity from the bubble velocity at the point corresponding to the bubble centre. The technique is applicable for flows with high velocity gradients. Results of the slip velocity measurements in an upward bubbly flow at laminar pipe Reynolds numbers are presented. Received: 25 July 1996/Accepted: 13 April 1998  相似文献   

3.
A relatively simple optical scheme using the reference-mode laser Doppler anemometry for the in situ measurement of flow properties of a dilute particle-fluid two-phase suspension having a predominant flow direction is hereby proposed. It is an extension of the established technique of optical gating for particle sizing which is fully integrated into the established technique of laser Doppler anemometry for velocity measurement. Particles that can be measured by this scheme are limited to those with sizes greater than the smaller dimension of the optical measuring volume. Inherent in the methodology is a procedure for providing information on the local particle number density and velocity distributions for each size range of the particles and the local velocity distribution of the continuous phase. The accompanying electronics and interfaces are also established for data processing and analysis in a mini computer. Validation of the scheme has been accomplished by controlled experiments using stainless steel balls and water droplets of 1 mm and greater in diameter.  相似文献   

4.
This paper proposes a combined method for two-dimensional temperature and velocity measurements in liquid and gas flows using temperature-sensitive particles (TSPs), a pulsed ultraviolet laser, and a high-speed camera. TSPs respond to temperature changes in the flow and can also serve as tracers for the velocity field. The luminescence from the TSPs was recorded at 15,000 frames per second as sequential images for a lifetime-based temperature analysis. These images were also used for the particle image velocimetry calculations. The temperature field was estimated using several images, based on the lifetime method. The decay curves for various temperature conditions fit well to exponential functions, and from these the decay constants at each temperature were obtained. The proposed technique was applied to measure the temperature and velocity fields in natural convection driven by a Marangoni force and buoyancy in a rectangular tank. The accuracy of the temperature measurement of the proposed technique was ±0.35–0.40°C.  相似文献   

5.
Sample and hold processors may be used to avoid velocity bias errors in laser Doppler anemometer (LDA) measurements if the ratio of flow to measurement time scale is sufficiently high, typically greater than 5. It has been widely assumed that the flow time scale refers to the Taylor time microscale. This paper shows with experimental verification that the appropriate flow time scale is, in fact, the integral time scale of the flow. Furthermore, it shows that if velocity bias exists with a sample and hold processor, it can in many cases be predicted. It has been shown elsewhere that the integral time scale is also the relevant one for the prediction of velocity bias of a controlled processor.  相似文献   

6.
The same probe, comprising two parallel wires, is used to measure either velocity or temperature derivatives in shearless grid turbulence at a Taylor microscale Reynolds number of about 40. The aerodynamic interference of the probe affects the mean velocity when the transverse separation jy between the wires is smaller than about 3m, where m (ۂ.4 mm for the present experiments) is the Kolmogorov length scale, but not the mean temperature. Spectra and corresponding moments of transverse velocity and temperature derivatives are significantly but similarly affected when jyh3m, thus suggesting that this effect is more likely to be caused by electronic noise than aerodynamic interference. Indeed, after noise corrections are applied, the resulting derivative variances are brought into alignment with values inferred from two-point correlations with respect to y. Transverse derivative variances and their corresponding spectra satisfy isotropy closely but second-order structure functions satisfy it only when the separation is less than about 10m, i.e. the dissipative range scales.  相似文献   

7.
Procedures which allow the correlation of velocity signals from a laser anemometer and temperature signals from a compensated, small-diameter thermocouple are described together with the error sources associated with the use of the technique in premixed flames. The digital compensation procedure includes the effect of velocity and temperature on the time constant of the thermocouple and the influence of its exposure to the solid particles required by the laser anemometer are quantified and shown to be able to cause large differences in the measured probability-density-distribution of the reaction progress variable. The technique has been used to measure the probability-density-distribution of temperatures, conditioned by the arrival of velocity signals and velocity conditioned by the temperature signal and sample results are presented to help quantify the accuracy of the measurements.  相似文献   

8.
A pulsed-wire probe based on the use of one or two parallel wires, capable of measuring the velocity and the temperature in natural convection flows is described. These measurements are based on the analysis of the relaxation response of a pulsing wire, submitted to a very short electrical pulse. The analysis of the temperature variation on an optional second receiver wire, gives information about the velocity direction. The implementation simplicity of this probe, its good spatial precision, the lack of thermal contamination of the flow, as well as the possibility of obtaining simultaneous velocity and temperature measurements, allow the integration of the device in a multi-point measurement network, capable to deliver thermal and dynamic cartographies of unsteady convection flows.  相似文献   

9.
In this work, the effect of experimental parameters on the error levels associated with simultaneous measurement of displacement and temperature using Molecular Tagging Velocimetry/Thermometry (MTV/T) was quantified via simulated images. Images were simulated using Gaussian profile laser lines. Noise was added to the images using a uniform random distribution and a Gaussian random distribution to simulate electronic noise and shot noise, respectively. The results showed that the error levels in the displacement and temperature measurements were inversely related for most experimental parameters including the laser line thickness, fluid temperature and image delay times. It is concluded that the dynamic range of the technique depends on the flow speeds and temperatures and must be determined for each experiment individually. Error levels, for 95% confidence, were found to be better than 0.3°C for temperature and 0.2 pixels for displacement for typical real-world experimental parameters.  相似文献   

10.
Stratified flows with small density difference commonly exist in geophysical and engineering applications, which often involve interaction of turbulence and buoyancy effect. A combined particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) system is developed to measure the velocity and density fields in a dense jet discharged horizontally into a tank filled with light fluid. The illumination of PIV particles and excitation of PLIF dye are achieved by a dual-head pulsed Nd:YAG laser and two CCD cameras with a set of optical filters. The procedure for matching refractive indexes of two fluids and calibration of the combined system are presented, as well as a quantitative analysis of the measurement uncertainties. The flow structures and mixing dynamics within the central vertical plane are studied by examining the averaged parameters, turbulent kinetic energy budget, and modeling of momentum flux and buoyancy flux. At downstream, profiles of velocity and density display strong asymmetry with respect to its center. This is attributed to the fact that stable stratification reduces mixing and unstable stratification enhances mixing. In stable stratification region, most of turbulence production is consumed by mean-flow convection, whereas in unstable stratification region, turbulence production is nearly balanced by viscous dissipation. Experimental data also indicate that at downstream locations, mixing length model performs better in mixing zone of stable stratification regions, whereas in other regions, eddy viscosity/diffusivity models with static model coefficients represent effectively momentum and buoyancy flux terms. The measured turbulent Prandtl number displays strong spatial variation in the stratified jet.  相似文献   

11.
This paper describes the tests of accuracy and the first application of a combined planar visualization technique. Its goal is two-phase flow discrimination, i.e. simultaneous measurements of velocity of droplets and ambient gas in the case of two-phase flow mixing, at the same location and with possible conditioning by “apparent diameter” (AD) of the droplets. It combines the mature techniques of particle image velocimetry (PIV), planar Mie scattering diffusion (PMSD), planar laser-induced fluorescence (PLIF), and it necessitates two synchronized cross-correlation systems, digital image treatment and analysis. This technique was developed with the objective of better describing the mixing between liquid and gaseous phases as in the case of high-pressure spray atomization in quiescent ambient gas. The basic principle of separation is to seed the ambient gas with micrometer particles and to tag the liquid with fluorescent dye. We use digital image treatment and analysis to discriminate between the phases. We use two cross-correlation PIV systems in order to obtain the velocity field of the droplets and gas simultaneously and separately at the same location. The digital image processing for separating the phases involves geometric measurement of droplet shapes. This leads to measurement of droplet parameters close to their real diameter, which could be used for analysis of actual mixing. A synchronized system composed of two CCD cameras is used for image recording, and two Nd:YAG lasers are used for generating pulsed light sheets at times t and t + δt. Tests were performed to check for different sources of errors. The combined technique was applied to measurements in high-pressure spray flow atomizing in a quiescent ambient gas, and first results are presented.  相似文献   

12.
Broadband single pulse coherent anti-Stokes Raman scattering (CARS) experiments employing a folded-box phase-matching geometry in a pulsed hypervelocity blunt body flow are presented. Rovibrational spectra of molecular nitrogen, produced in the freestream and within the shock layer at moderately high enthalpy (8.4 MJ/kg), are examined. Difficulties peculiar to the application of a single pulse optical technique to a high enthalpy pulsed flow facility are discussed and measurements of flow temperatures are presented. Theoretically calculated values for temperatures based upon algorithms used to determine freestream and shock layer conditions agree well with experimental measurements using the CARS technique. The measurements indicate that thermal non-equilibrium conditions exist within the freestream, and that near thermal equilibrium exists at the point of measurement within the shock layer. The comparison between the experiment and theory in the shock layer is improved by using the measured freestream temperatures as input to the shock layer computations.  相似文献   

13.
A cylindrical electrodiffusion probe for the measurement of liquid velocity vectors in the plane perpendicular to its axis was developed as an analogue to the triple-split film thermoanemometer. The geometry of the probe enables high directional resolution in the whole range of 360°. The total mass transfer of the probe was well correlated by the relation Sh = 0.76 Sc 0.33 Re 0.47.List of symbols A kj , B kj Fourier coefficient - c [mol/m3] depolarizer concentration - te]D [m2/s] diffusion coefficient of species - d [m] diameter of probe - f [1/s] frequency of vortex formation - h [mol/m2s] coefficient of mass transfer - I k normalized current of K-th segment - i [A] total current - i k [A] current of K-th segment - Re Reynolds number, u d/v - Sc Schmidt number, v/D - Sh Sherwood number, h d/c D - Sr Strouhal number, f d/v - v [m/s] free stream velocity - [°] flow angle, i.e. angle between approaching stream and reference direction of probe - v [m2/s] kinematic viscosity  相似文献   

14.
A hypersonic shock-tunnel flow around an axisymmetric model of a planetary entry probe is analyzed. Planar laser-induced fluorescence is applied to measure both the velocity and the rotational temperature everywhere in the central plane of the flow field. The experimental test case is compared to simulations using the direct simulation Monte Carlo (DSMC) method. While the Mach 9.7 flow at a freestream Reynolds number based on the model diameter of 35,000 is chemically frozen, effects of thermal non-equilibrium and localized rarefaction cannot be neglected. DSMC and measurements agree well within the outer wake, but disagree close to the centerline, where in particular the measured velocity is higher than values predicted by the simulations. The experimental results indicated a shorter recirculation region and increased local fluctuations in the free shear layer upstream of the wake recompression shock when compared to the simulation. These effects are attributed to incipient transition, which is not observed in the simulations, as the simulations did not model the effects of freestream fluctuations. Furthermore, measured and simulated vorticities are compared with theoretical predictions.  相似文献   

15.
 Transient dynamics of two injection flows, upstream and downstream a swirl injector, are investigated. Capillary n-heptane pipe flow is measured using laser Doppler anemometer to obtain instantaneous time series of centerline velocity and to reconstruct series of instantaneous and integrated flow rates and pressure gradient. A collimated laser sheet and a high-speed video camera visualize injected spray flow. Finally, the phase Doppler anemometer measurements are introduced to analyze instantaneous patterns of droplets velocity-size and number density into fuel spray. All measurements are employed at similar temporal resolution close to 30 μs. Results indicate that both flows are strongly time-dependent and well correlated in time-phases. Initial transitions are completed by 100 μs. Opening or closing of the injector valve affects both flows as strong delta oscillation causes spray penetration dynamics and a post injection effect. A combination of intrusive laser-based techniques allows indication of the basic injection and spraying characteristics need to optimize high-pressure fuel injectors and combustion late injection mode at a high speed. Received: 19 December 1998/Accepted: 13 August 1998  相似文献   

16.
 We present experimental results using Filtered Rayleigh Scattering to make planar measurements of velocity, temperature and pressure in ambient air and in a Mach 2 free jet. The ambient air measurements are used to identify and calibrate experimental uncertainties. The Mach 2 measurements demonstrate the usefulness of the technique for making accurate planar measurements in a high speed flow. The measured values for velocity, temperature and pressure in the Mach 2 jet ranged, through a shock system, from 205 to 235 m/s, 150 to 170 K and 700 to 1000 torr, with estimated uncertainties of ±5.4 m/s, ±3.2 K and ±38 torr (±2 to 3%, ±2% and ±4–5%, respectively). Received: 10 December 1996/Accepted: 14 July 1997  相似文献   

17.
The combination of broadband CARS thermometry on nitrogen with the narrowband technique, for detection of a second major species, is applied to counterflow laminar propane-air diffusion flames. Temperature profiles are measured for various conditions of strain and equivalence ratio. Comparisons with 1D calculations of the flow with a detailed kinetic mechanism are satisfactory. Some measurements of CO concentrations are performed. Feasability of temperature measurements when the propane is replaced by liquid fuel (heptane) is demonstrated.  相似文献   

18.
LDA experiments have been conducted in a two-dimensional steady streaming flow field in order to determine the secondary velocity profiles. We describe here an LDA system developed to resolve small secondary-flow velocities and to detect flow reversals due to viscoelasticity. Results compare well with theoretical predictions. A detailed analysis of the errors and uncertainties involved in the measurements confirms the reliability and reproducibility of the measurements. Although the method has been applied here to a specific flow field, the technique should be applicable to a number of secondary flows, such as those which can occur in curved pipes and in oscillating pipe flows.The authors have benefited from discussions with Professor Bruce Chehroudi, from the Department of Mechanical Engineering, University of Illinois at Chicago. This work was supported by the Office of Naval Research through Contract Number N00015-85-K-0201.  相似文献   

19.
Laser-diode-pumped Nd:YAG lasers (=1064nm) are compact, single-transverse mode laser sources with a higher output power than diode lasers ( 800 nm). They are suitable light sources for miniaturized laser Doppler anemometer systems. On the other hand, the sensitivity of conventional detectors and the scattering efficiency particularly of particles smaller than 1 m are reduced, when these light sources are used. The paper describes comparison measurements of commercial photodetectors based on Si, Ge and InGaAs in a test LDA with an Nd:YAG laser. The achievable signal-to-noise ratios (SNR) of the Doppler bursts versus the laser power in the measuring volume are compared. This shows that Silicon Avalanche photo diodes (APD) for the near-infrared using a special technology and InGaAs-APDs with low-noise pre-amplifiers can be used advantageously.Similar comparison measurements with an LDA system at =830 nm show that an Nd:YAG laser based LDA is more sensitive and leads to higher SNRs because of its higher output power, even though the Mie scattering efficiency and the detector sensitivity are reduced.  相似文献   

20.
 An investigation was performed in grid-generated turbulence to highlight the difficulties in estimating integral and microscales from discrete autocorrelation measurements made using a burst-mode laser Doppler anemometer (LDA). Comparison was made to hot-wire results and the theoretical growth laws determined by the decay of turbulent energy. The chief concern was the presence of a spike in the measured autocorrelation coefficient functions at t=0. It was found that renormalizing the autocorrelation to a value at t=0 determined by “backfitting” a quadratic equation to the slots near t=0 led to microscale estimates that showed the same trend as the decay law and were in agreement with those determined using a hot-wire. Additionally, practical guidelines are presented for making accurate autocorrelation measurements by LDA. Received: 12 January 1995/Accepted: 9 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号