首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 152 毫秒
1.
纳米碳管阵列场增强因子的计算   总被引:2,自引:0,他引:2       下载免费PDF全文
采用悬浮球模型,结合对称的镜像电荷层方法,对静电场中纳米碳管阵列的场增强因子进行了计算,并在考虑极板间距的情况下,对其计算结果做了修正.结果表明:纳米碳管阵列的间距对纳米碳管阵列的场发射性能影响很大.当纳米碳管阵列中碳管间距小于碳管高度时,场增强因子随间距的减小而急剧减小;而当碳管间距显著大于碳管高度时,场增强因子几乎不变.但当考虑阴阳极之间单位面积通过的场发射电流时,可论证当管间距与管高度相若时,能使场发射电流密度最佳(最大).另外,极板间距对场增强因子的影响很小,但是可以通过减小极板间距,来降低纳米碳管作为场发射体的场发射的开启电压,优化纳米碳管的场发射性能. 关键词: 纳米碳管阵列 场增强因子 开启电压  相似文献   

2.
The field emission performances of normal-gate cold cathode, which is composed of different multi-wall carbon nanotubes (MWCNTs) bundles array are calculated. The device parameters such as the arrangement of bundles, array density, gate location, gate voltage, anode voltages and anode–cathode distance affect the field emission properties, which is discussed in detail. The results reveal that the hexagon bundles array needs a lower threshold voltage than square array to reach high field enhancement factor and large emission current density. The emission current density is two orders larger than that of the oxide emitter. The optimal bundles array densities of hexagon and square array to get field enhancement factor are 0.0063 and 0.00375 μm−2, respectively. Meanwhile, the field emission performances are impacted critically by gate location and gate voltage. Field emission properties changed little while the anode–cathode distance varies within tens of micrometers, which increases the process-friendliness of CNTs field emission devices.  相似文献   

3.
In order to optimize the field emission from carbon nanotubes (CNTs) array by the emission current density, the calculation of the field emission was extended with the floating sphere model and the Fowler–Nordheim equation, and the trend of the emission current density versus the intertube distance (the distance between the nearest CNTs) was mainly discussed in this paper. Only considering the field enhancement factor in the previous works, the field emission from CNTs array was optimized only by possibly decreasing the intertube distance with the maximal field enhancement factor. Herein, both the field enhancement factor and the emission current density were taken into account, the field emission from CNTs array could be optimized analytically with the intertube distance of 10th of the tube height, which was much smaller than the estimated value and the experiment result.  相似文献   

4.
王新庆  李良  褚宁杰  金红晓  葛洪良 《物理学报》2008,57(11):7173-7177
以纳米碳管阵列为研究对象,利用镜像悬浮球模型及Fowler-Nordheim电流密度公式,对纳米碳管阵列的场发射电流密度进行计算,进而综合考虑场发射增强因子及场发射电流密度对纳米碳管阵列场发射性能进行定量优化.参考碳管阵列场发射电流密度最大值及场发射增强因子,表明当纳米碳管阵列间距为碳管高度十分之一时,纳米碳管阵列的场发射性能得到优化.与以前的理论估算结果相比,优化的阵列间距进一步减小.当纳米碳管间距过大,场发射增强因子增加,而场发射电流密度会在更大程度上减小;当纳米碳管密度较大时,场发射增强因子受到静电 关键词: 纳米碳管 场发射 增强因子 电流密度  相似文献   

5.
《Current Applied Physics》2014,14(8):1092-1098
In this paper, we propose the novel branched carbon nanotubes (B-CNTs) as efficient candidate for field emission applications. We believe that the double-stage structure of B-CNTs, beside formation of multiple thin branches at the apex of each vertical CNT, is responsible for the observed enhanced field emission behavior in B-CNTs. In this regard, we have derived an analytical model to evaluate the field enhancement factor (β) of the B-CNTs in comparison with CNTs, as the most popular cathode for field emission applications in the scientific society. The presented model also allows investigating the effect of different structural parameters on the field emission characteristic. We have also, compared the field emission characteristics of the B-CNTs with vertical CNTs experimentally. We observed a β value for B-CNTs which was around three times higher than CNTs. The observed enhancement in the experimental data was in good agreement with the presented analytical model.  相似文献   

6.
Field evaporation was used in the post-fabrication treatment of a carbon nanotubes (CNTs) array and effectively modified the CNTs morphology in favor of the field emission under a moderate field. After the field evaporation treatment, the uniformity of the emission site distribution improved but the onset voltage rose. Using the Fowler-Nordheim theory, the actual onset field and the evaporation field around the CNT were calculated to be −4.6-5 and 9-12 V/nm, respectively. These values are close to those obtained from the individual CNT samples. The above results have provided an alternative to modify the configuration of an array sample and demonstrated the feasibility of tackling the problem of the disparity in the field emission capability of different CNTs in an array.  相似文献   

7.
采用丝网印刷工艺制作了碳纳米管(CNTs)薄膜阴极.经适当能量激光烧蚀后,相互粘连的CNTs随表面粘附有机物的蒸发而分散开,管间隙增加、屏蔽效应减小,使得场发射性能大幅度提高,开启场强降低、场倍增因子β增大.Raman光谱分析表明,随激光能量增加,CNTs表面缺陷增多,成为新的场发射点,对其β增大的贡献加强.相对于两电极结构,三电极中平栅极结构场发射性能经激光烧蚀有更显著的改善.这说明激光烧蚀是提高CNTs场发射性能的有效方法. 关键词: 碳纳米管薄膜 场发射 激光烧蚀 Raman光谱  相似文献   

8.
A hexagon pitch carbon nanotube (CNT) array vertical to the normal gate of cold cathode field emission displayer (FED) is simulated by solving the Laplace equation. The calculated results show that the normal gate causes the electric field around the CNT tops to be concentrated and emission electron beam become a column. The field enhancement factor and the emission current intensity step up greatly compared with those of diode structure. Emission current density increases rapidly with the decrease of normal-gate aperture. The gate voltage exerts a critical influence on the emission current.  相似文献   

9.
We investigated the influence of growth time on field emission properties of multi-walled carbon nanotubes deposited on silicon nanoporous pillar array (MWCNTs/Si-NPA), which were fabricated by thermal chemical vapour deposition at 800 °C for 5, 15 and 25 min respectively, to better understand the origins of good field emission properties. The results showed that the MWCNTs/Si-NPA grown for 15 min had the highest field emission efficiency of the three types of samples. Morphologies of the products were examined by field-emission scanning electron microscope, and the excellent field emission performance was attributed not only to the formation of a nest array of multi-walled carbon nanotubes, which would largely reduce the electrostatic shielding among the emitters and resulted in a great enhancement factor, but also to the medium MWCNTs density films, there was an ideal compromise between the emitter density and the intertube distance, which also could effectively avoid electrostatic shielding effects, along with a high emitter density.  相似文献   

10.
Carbon nanotubes (CNTs) were grown successfully on the as-deposited dual metal (Ti and Ni) embedded films using a radio frequency plasma-enhanced chemical vapor deposition system. The microstructure of CNTs grown on the dual metal films proved to be heavily dependent on the percentages of metals included, varying both in size and in density. Electron emission tests carried out on the films with CNTs grown showed that the threshold field was dependent on the surface morphology of the CNTs, with the lowest threshold field at 3.5 V/μm from 2.5% Ti/Ni film with CNTs. The field enhancement factor, β, of the emitting tips was also calculated from the Fowler–Nordheim plots, where CNTs from the 2.5% Ti/Ni film gave the highest field enhancement factor. However, it was observed that films with a single metal of either Ti or Ni did not manage to grow CNTs, possibly due to a lack of catalyst centres at the surface of the films. It was believed that the Ni nanoclusters acted as catalysts centres giving a rather uniform but randomly orientated type of CNTs. Results obtained pointed that the fabricated nanocomposite material could be a possible choice for cold cathode emitters and the Ti/Ni mixture could be an effective composite for controlling the CNT density.  相似文献   

11.
The simulation results of the electric field intensity and the enhancement factor, γ, for an individual CNT imaged as a conducting rod is presented. The field enhancement factor, γ̄, for the CNT paste array is evaluated experimentally by varying the cathode-anode (CA) spacing, d. The simulations indicate that the distribution of electric field intensity and the enhancement factor as a function of cathode-anode spacing, d, could be divided into the two parts: strong (d<100 μm) and weak (d>100 μm) dependences of the enhancement factor γ(d). Furthermore, the field enhancement factor, γ̄, estimated experimentally for the CNT paste FEA indicates that the two-region field emission model (TRFE) is adequate for estimation of the field enhancement factor, γ̄. Moreover, the effective enhancement factor, γ̄, for the CNT paste FEA was found to be ≈50γ and is attributed to the additions of the emission currents from the individual CNTs in an array. In addition, the empiric functions of the geometrical enhancement factor, β̄(d), and γ̄(d) were estimated from the Fowler–Nordheim plot for the CNT paste FEA. One can use the empiric functions β̄(d) and γ̄(d) for the design and fabrication of the devices based on the CNT paste FEA with a variable CA spacing. PACS 81.07.De; 85.35.Kt; 79.70.+q; 85.45.Fd; 72.80.Tm  相似文献   

12.
The problem of determining the field enhancement factor in field-emission cathodes based on carbon nanotubes (CNTs) is considered. The electrostatic problem of finding the field enhancement factor for nanotubes with different shapes of the tip as a function of the angle the nanotube makes with the cathode surface and of the interelectrode spacing is solved. The dependence of the electric field enhancement factor on the spacing between vertically oriented nanotubes constituting an array is derived. Making allowance for this dependence gives an optimal value of the surface density of nanotubes in the array at which the emission current density is maximal. The I—V characteristic of CNT-based cathodes is studied with regard to the statistical straggling of their orientation angles. This I—V characteristic is compared with the characteristic obtained with regard to the statistical straggling of the CNT geometrical parameters.  相似文献   

13.
蔡丹  刘列  巨金川  王海涛  赵雪龙  王潇 《物理学报》2016,65(4):45202-045202
采用电泳沉积法、碳纳米管纸和化学气相沉积直接生长法制备了三种碳纳米管阴极. 从强流发射性能、阴极等离子体膨胀、阴极起动、发射均匀性、工作稳定性以及脉冲放气特性等多个方面, 对比研究了碳纳米管阴极和化纤天鹅绒阴极的强流发射特性, 研究表明碳纳米管阵列和碳纳米管纸阴极发射性能明显优于普通化纤天鹅绒, 碳纳米管阴极发射性能与碳纳米管取向无关, 管壁的缺陷发射对无序碳纳米管阴极强流发射具有重要贡献. 碳纳米管阴极的起动场强约为普通化纤天鹅绒的2/3, 电场上升率相同时碳纳米管阴极比化纤天鹅绒阴极起动时间短12–17 ns. 碳纳米管阴极发射均匀性优于化纤天鹅绒, 尤其是碳纳米管阵列, 整个阴极表面等离子体光斑致密且均匀. 在二极管本底气压为6×10-3 Pa时, 碳纳米管纸阴极对应的二极管峰值气压不到0.3 Pa, 约为普通化纤天鹅绒阴极的1/5, 碳纳米管阵列阴极放气量在三种阴极中最少, 仅为0.042 Pa. 结果表明, 碳纳米管阴极在强流电子束源和相关高功率微波器件领域具有潜在的应用价值.  相似文献   

14.
Selective plasma etching and hydrogen plasma treatment were introduced in turn to improve field emission characteristics of screen-printed carbon nanotubes (CNTs) cold cathode, which was prepared by using slurry of mixture of multi-wall CNTs, organic vehicles and inorganic binder, i.e. silicon dioxide sol. The results show that selective plasma etching process could effectively remove parts of surface inorganic vehicle (SiO2) layer and expose more smooth and clean CNTs on cathode surface, which could significantly decrease the operating field of CNTs cathode. There are some nanoparticles emerging on the out of CNTs wall after hydrogen plasma treatment, which are equivalent to increase field emission point of cathode. At the same time, these nanoparticles can increase the local electric field of CNTs, which can decrease operating voltage of CNTs cathode and improve uniformity field emission.  相似文献   

15.
雷达  孟根其其格  张荷亮  智颖飙 《物理学报》2013,62(24):248502-248502
建立一种平行栅碳纳米管阵列阴极,利用悬浮球模型和镜像电荷法进行计算,给出碳纳米管顶端表面电场与电场增强因子的解析式. 在此基础上,进一步分析器件各类参数以及接触电阻对阴极电子发射性能的影响. 分析表明,碳纳米管间距大约为2倍碳纳米管高度时阵列阴极的分布密度最佳,靠边缘部位的碳纳米管发射电子能力比其中心部位的大;除碳纳米管的长径比之外,栅极宽度和栅极间距也对电场增强因子有一定作用;接触电阻的存在大幅度降低碳纳米管顶端表面电场与发射电流,而接触电阻高于800 kΩ时,器件对阳极驱动电压的要求更高. 关键词: 平行栅碳纳米管阵列 悬浮球 场增强因子 接触电阻  相似文献   

16.
马玉龙  向伟  金大志  陈磊  姚泽恩  王琦龙 《物理学报》2016,65(9):97901-097901
在超高真空系统中对基于丝网印刷方法制备的碳纳米管薄膜的场蒸发效应进行实验研究. 实验发现, 碳纳米管薄膜样品存在场蒸发现象, 蒸发阈值场在10.0-12.6 V/nm之间, 蒸发离子流可以达到百皮安量级; 扫描电子显微镜分析和场致电子发射测量结果表明, 场蒸发会使碳纳米管分布变得更加不均匀, 会导致薄膜的场致电子发射开启电压上升(240→300V)、场增强因子下降(8300→4200)、蒸发阈值场上升(10→12.6V/nm), 同时使得薄膜场致电子发射的可重复性明显变好. 场蒸发也是薄膜自身电场一致性修复的表现, 这种修复并非表现在形貌上, 而是不同区域场增强因子之间的差距会越来越小, 这样薄膜场致电子发射的可重复性和稳定性自然会得到改善.  相似文献   

17.
Vertically aligned CNTs were synthesized on a four inch wafer, followed by the preparation of a CNT yarn. The yarn emitter was found to have an extremely high field enhancement factor, which was confirmed to have originated from multi-stage effect. In addition to superb field emission characteristics, the energy exchange during field emission, called Nottingham effect, was observed from the CNT yarn emitter. A CNT yarn was attached to the thermistor whose resistance depends on temperature. Then, the change of resistance was monitored during the field emission, which enabled us to calculate the energy exchange. It was found that the observed heating originated from both Nottingham and Joule heating. Nottingham heating was dominant at low current region while Joule heating became larger contribution at high current region. Very large Nottingham region of up to 33.35 mA was obtained, which is due presumably to the high performance field emission characteristics of a CNT yarn. This is believed to be an important observation for developing reliable field emission devices with suppressed Joule heating effect.  相似文献   

18.
A new approach for making field emission cathodes consisting of carbon nanotubes (CNTs) is discussed. The authors used a chemical displacement technique to fabricate field emission cathodes by co-depositing CNTs/nickel composite onto the surface of a zinc-coated soda-lime glass. There are several advantages of this displacement method for preparing field emission cathodes such as the uniform distribution of CNTs in the composite cathodes, low cost of consumed CNTs, low cost of instrument and equipment, feasibility of large-area mass production, and stability of plating solution, which can be used for many times and still remain useful after a long-time storage. The results show that, after the CNT purification and dispersion processes, a CNT content of 1.0 g/L, a pH value of 7.0, and a temperature of 50 ± 3 °C are the optimal process conditions which give better CNT distribution in the CNTs/Ni composite emitter and better field emission performance. The CNTs/Ni composite deposited with a plating solution which has been used for tens of times has an emission effect similar to those deposited with a new solution.  相似文献   

19.
A procedure for optimizing a field-emission cathode based on carbon nanotubes (CNTs) is developed. An array of identical equidistant vertical CNTs is considered. The optimization procedure takes into account the effect of screening of an electric field by neighboring nanotubes by solving a Laplace equation and the thermal instability of nanotubes, which limits the emission current density of a nanotube, by solving a heat conduction equation. The relation between the emission current and the applied voltage is described by the Fowler-Nordheim relationship containing the CNT tip temperature as a parameter. Upon optimization, the optimum distance between CNTs that ensures the maximum emission current density is calculated. The calculation results demonstrate that this parameter depends substantially on both the applied voltage and the nanotube geometry. These dependences are weakly sensitive to the choice of the transport coefficients (thermal conductivity, electrical conductivity) of nanotubes.  相似文献   

20.
In this paper, we studied the effect of NaCl electrolyte as a surface treatment on improving the uniformity and stability of field emission of screen-printed carbon nanotubes (CNTs). A short period of the electrolyte treatment of CNT films remarkably increase emission uniformity and stability. Furthermore, the field emission characteristics of screen-printed carbon nanotubes (CNTs) such as low turn-on field, high emission current density and strong adhesion of the CNT film on the substrate were also reinforced after post-treated. SEM, TEM and Raman spectrum study revealed that uniformity and stability of field emission is enhanced by two factors. Firstly, the electrolyte treatment appeared to render the CNT surfaces more actively by exposing more CNTs form the CNT paste, which dominates initial uniformity and stability of field emission. Secondly, the number of opened CNTs and defects CNTs of CNT film were increased by electrical current energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号